Entry - *141800 - HEMOGLOBIN--ALPHA LOCUS 1; HBA1 - OMIM
* 141800

HEMOGLOBIN--ALPHA LOCUS 1; HBA1


Alternative titles; symbols

3-PRIME ALPHA-GLOBIN GENE
MINOR ALPHA-GLOBIN LOCUS


HGNC Approved Gene Symbol: HBA1

Cytogenetic location: 16p13.3     Genomic coordinates (GRCh38): 16:176,680-177,522 (from NCBI)


Gene-Phenotype Relationships
Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
16p13.3 Erythrocytosis, familial, 7 617981 AD 3
Heinz body anemias, alpha- 140700 AD 3
Hemoglobin H disease, nondeletional 613978 3
Methemoglobinemia, alpha type 617973 AD 3
Thalassemias, alpha- 604131 3

TEXT

Description

The alpha and beta loci determine the structure of the 2 types of polypeptide chains in the tetrameric adult hemoglobin, Hb A, alpha-2/beta-2. The alpha locus also determines a polypeptide chain, the alpha chain, in fetal hemoglobin (alpha-2/gamma-2), in hemoglobin A2(alpha-2/delta-2), and in embryonic hemoglobin (alpha-2/epsilon-2). The number of normal alpha genes (3, 2, 1 or none) in Asian cases of alpha-thalassemia (604131) results in 4 different alpha-thalassemia syndromes (Kan et al., 1976). Three normal alpha genes gives a silent carrier state. Two normal alpha genes results in microcytosis (so-called heterozygous alpha-thalassemia). One normal alpha gene results in microcytosis and hemolysis (so-called Hb H disease, 613978). No normal alpha gene results in 'homozygous alpha-thalassemia' manifested as fatal hydrops fetalis.

The alpha chain of human hemoglobin contains 141 amino acids (Konigsberg et al., 1961).


Mapping

By studies of somatic cell hybrids, Deisseroth et al. (1976) showed that the alpha and beta loci are on different chromosomes.

Deisseroth et al. (1977) combined the methods of somatic cell hybridization and DNA-cDNA hybridization to establish assignment of the alpha-globin locus to chromosome 16. This represents an extension of the cell hybridization method permitting mapping of genes that are not functional in the cultured cell. Deisseroth and Hendrick (1978) confirmed the assignment of the alpha locus to chromosome 16 by means of cotransfer of this gene with the human APRT gene, known to be on 16 (see 102600), into mouse erythroleukemia cells. (The APRT gene is on the long arm of chromosome 16.)

Weitkamp et al. (1977) presented data concerning linkage of the alpha and beta loci to 34 marker loci. Data on alpha-thalassemia, combined with those on the Hopkins-2 variant, excluded linkage of alpha and haptoglobin (140100) at a recombination fraction less than 0.15.

On the basis of findings in a case of partial trisomy 16, Wainscoat et al. (1981) concluded that the alpha-globin genes are on segment 16pter-p12. By combining somatic cell hybridization with a cDNA probe in the study of a cell line with reciprocal translocation between 16q and 11q, Koeffler et al. (1981) showed that the alpha-globin genes are on the short arm of 16. Gerhard et al. (1981) used an improved method of in situ hybridization to confirm the assignment of the alpha-globin cluster to chromosome 16p.

On the basis of the findings in a fetus with an unbalanced translocation involving 16p, Breuning et al. (1987) concluded that the HBA cluster is distal to PGP (172280).

By a combination of in situ hybridization, Southern blot analysis, and linkage analysis using the fragile site 16p12.3 and translocation breakpoints within band 16p13.1, Simmers et al. (1987) mapped the alpha-globin gene complex to 16pter-p13.2.


Cytogenetics

Buckle et al. (1988) described a child in whom cytogenetic analysis indicated monosomy for 16pter-p13.3. DNA studies showed that the patient had not inherited either maternal alpha-globin allele. The child had the alpha-thalassemia trait as well as moderate mental retardation and dysmorphic features. They determined that the gene is located in the 16pter-p13.3 segment. After reviewing earlier data placing the alpha-globin cluster slightly more proximal, they concluded that the findings in this child may be more reliable.


Gene Structure

Orkin (1978) identified alpha-globin gene fragments in restriction endonuclease digests of total DNA after electrophoresis by hybridization with P32-labeled cDNA probes. The data indicated that the alpha genes occur in duplicate and that the 2 copies lie close together. Thus direct physical evidence was provided for the duplication deduced from the findings with mutant alpha chains and with the alpha-thalassemias and the kinetics of hybridization in solution. The 2 alpha chains lie about 3.7 kilobases apart.

Leder et al. (1978) presented evidence that the alpha and beta genes of all adult mammalian hemoglobins have 2 intervening sequences at analogous positions.


Gene Function

Straub et al. (2012) reported a model for the regulation of nitric oxide (NO) signaling by demonstrating that hemoglobin alpha, encoded by the HBA1 and HBA2 (141850) genes, is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to hemoglobin alpha and is abrogated by its genetic depletion. Mechanistically, endothelial hemoglobin alpha heme iron in the Fe(3+) state permits NO signaling, and this signaling is shut off when hemoglobin alpha is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3; 613213). Genetic and pharmacologic inhibition of CYB5R3 increased NO bioactivity in small arteries. Straub et al. (2012) concluded that their data revealed a mechanism by which the regulation of the intracellular hemoglobin alpha oxidation state controls nitric oxide synthase (NOS; see 163729) signaling in nonerythroid cells. The authors suggested that this model may be relevant to heme-containing globins in a broad range of NOS-containing somatic cells.


Biochemical Features

Crystal Structure

Andersen et al. (2012) presented the crystal structure of the dimeric porcine haptoglobin (140100)-hemoglobin complex determined at 2.9-angstrom resolution. This structure revealed that haptoglobin molecules dimerize through an unexpected beta-strand swap between 2 complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the alpha- and beta-subunits of hemoglobin, explaining the tight binding between haptoglobin and hemoglobin. The hemoglobin-interacting region in the alpha-beta dimer is highly overlapping with the interface between the 2 alpha-beta dimers that constitute the native hemoglobin tetramer. Several hemoglobin residues prone to oxidative modification after exposure to heme-induced reactive oxygen species are buried in the haptoglobin-hemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-hemoglobin to the macrophage scavenger receptor CD163 (605545) protrudes from the surface of the distal end of the complex, adjacent to the associated hemoglobin alpha-subunit. Small-angle x-ray scattering measurements of human haptoglobin-hemoglobin bound to the ligand-binding fragment of CD163 confirmed receptor binding in this area, and showed that the rigid dimeric complex can bind 2 receptors.


Molecular Genetics

Wilson et al. (1977) described a possible nucleotide polymorphism in the untranslated 3-prime region of the alpha-globin gene and suggested that the heterogeneity is related to the existence of 2 alpha gene loci.

Musumeci et al. (1978) pointed out that the combination of alpha-thalassemia and beta-thalassemia leads to less severe clinical expression of homozygous beta-thalassemia. The rarity of a chromosome 16 with both alpha loci deleted (as demonstrated by the restriction endonuclease mapping technique of Southern) explains the rarity of severe forms of alpha-thalassemia in Africans, e.g., Hb H disease, which requires loss of 3 alpha loci and homozygous alpha-thalassemia which requires loss of 4 alpha loci (Dozy et al., 1979).

By restriction endonuclease mapping, Goossens et al. (1980) identified 12 persons heterozygous for a chromosome carrying 3 alpha genes. There were no hematologic abnormalities. The frequency was 0.0036 in American Blacks and 0.05 in Greek Cypriots. They had previously shown a frequency of 0.16 for the single alpha-globin locus in black Americans. The single locus had a frequency of 0.18 in Sardinians, but none of 125 Sardinians had a triple alpha locus, suggesting that the former had a selective advantage. Greek Cypriots have a frequency of 0.07 for the single alpha locus. Among 645 Japanese subjects studied, Nakashima et al. (1990) found 10 persons heterozygous for a chromosome with the triplicated alpha-globin locus. Thus, the frequency of the triplicate alpha locus was 0.008 in this population, while that of the single alpha-locus, i.e., the alpha-thalassemia-2 gene, may be lower than 0.0008. Analysis of haplotypes suggested that the triple alpha loci may have had multiple origins. Nakashima et al. (1990) commented on the fact that in Melanesia the frequency of the triplicated genotype is about the same (Flint et al., 1986) as in Japan, whereas the frequency of the single alpha gene is much higher, compatible with a selective advantage vis-a-vis malaria. Liebhaber et al. (1981) found identity of the alpha-1-globin genes from an Asian and a Caucasian. Furthermore, the alpha-1 and alpha-2 genes have a much higher degree of homology than would be predicted from the timing of the duplication before the bird-mammal divergence (about 300 Myr ago). Liebhaber et al. (1981) presented this as evidence for the existence of mechanisms for suppression of allelic polymorphisms and for exchange of genetic information within the alpha-globin gene complex. See 142200 for a discussion of gene conversion in relation to a comparably surprising homology of the 2 gamma-globin genes.

Lehmann and Carrell (1984) suggested the use of the following nomenclature for alpha-thalassemias based on the number of alpha-globin genes that are missing or abnormal: 1-alpha-thalassemia (silent type); 2-alpha-thalassemia, trans or cis (thalassemia trait); 3-alpha-thalassemia (Hb H disease); and 4-alpha-thalassemia (Hb Bart hydrops fetalis). In this scheme, homozygous Hb Constant Spring is a 2-alpha-thalassemia which, if combined with a cis 2-alpha-thalassemia heterozygous Hb Constant Spring, gives a 3-alpha-thalassemia and results in Hb H disease. Lehmann and Carrell (1984) also proposed that the 2 alpha-globin genes be designated as 5-prime (now alpha-2) and 3-prime (now alpha-1). Liebhaber and Cash (1985) described a method for identifying whether the alpha-1 or alpha-2 locus is the site of particular alpha-globin mutations. Rubin and Kan (1985) described a sensitive method for determining how many alpha-globin genes are present. It had the advantages of not requiring restriction enzyme digestion and gel electrophoresis and using the much more stable isotope (35)S rather than 32(P) for labeling. Only a small sample of DNA is needed. Application of the approach to diagnosis of Down syndrome was proposed. Assum et al. (1985) added a fourth restriction site polymorphism in the alpha-globin gene cluster. Compared to the beta-globin cluster, the alpha-globin cluster seemed to show a poverty of DNA polymorphism; however, Higgs et al. (1986) demonstrated a remarkable degree of DNA polymorphism in the alpha-globin gene cluster. In addition, the RFLP haplotype is associated with hypervariable regions of DNA.

Pseudo-alpha-1 (HBAP1), a pseudogene, is defective in several respects, including splice junction mutations and premature termination codons. Hardison et al. (1986) identified a previously undetected pseudogene in the alpha-globin cluster. It was not detected by hybridization studies but was found only on sequence analysis. Hardison et al. (1986) suggested that 'divergent copies of a large number of genes may comprise a substantial fraction of the slowly renaturing DNA of mammalian genomes.' The newly detected pseudogene, which will be symbolized HBAP2, is only 65 bp 3-prime to the polyadenylation site of zeta-1 (HBZP). The sequence is: 5-prime--HBZ--HBZP--HBAP2--HBA2--HBA1--3-prime. (The functional Hba gene of the mouse is on chromosome 11, but pseudogenes are dispersed to other chromosomes (e.g., Hba-ps3 to mouse chromosome 15) (Popp et al., 1981; Leder et al., 1981; Eicher and Lee, 1991).)

Vandenplas et al. (1987) described a new form of alpha-0 thalassemia in a South African family ascertained through a case of Hb H disease. A novel deletion of 22.8-23.7 kb of DNA removed 3 pseudogenes as well as the alpha-2 and alpha-1 genes. Since the alpha-2-globin gene encodes the majority of alpha-globin, a thalassemic mutation of the alpha-1-globin gene would be expected to result in a less severe loss of alpha-chain synthesis.

Moi et al. (1987) described an initiation codon mutation, AUG-to-GUG, in the alpha-1-globin gene. As predicted, the degree of interference with alpha-globin synthesis was less in this mutation than in the mutation in the initiation codon of the alpha-2-globin gene (see 141850).

Hill et al. (1987) described a unique nondeletion form of Hb H disease in Papua New Guinea: all 4 alpha genes were intact. Hill et al. (1987) commented on the striking difference in the hemoglobinopathies that occur in Southeast Asia and in Melanesia. In the former area, Hb E, Hb Constant Spring, and the Southeast Asian form of deletion alpha-0-thalassemia are all common, whereas these forms have never been found in Melanesians or Polynesians.

Jarman and Higgs (1988) identified a highly polymorphic region approximately 100 kb upstream of the alpha-globin genes and referred to it as 5-prime HVR. This is a valuable genetic marker for 16p. Higgs et al. (1989) gave a comprehensive review of the molecular genetics of the alpha-globin gene cluster, including its diseases.

Hatton et al. (1990) presented evidence for the existence of an alpha-locus control region (LCRA; 152422). This would be comparable to the beta-LCR which controls expression of the beta-like genes; see 152424. Liebhaber et al. (1990) identified an individual with alpha-thalassemia in whom structurally normal alpha-globin genes were inactivated in cis by a discrete de novo 35-kb deletion located about 30 kb 5-prime to the alpha-globin gene cluster. They concluded that the deletion inactivates expression of the alpha-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the alpha-globin genes.

Hemoglobinopathies of alpha-globin can result from missense mutations at either of the 2 alpha-globin loci, HBA1 or HBA2. Since the normal HBA1 and HBA2 genes encode an identical alpha globin, these mutants cannot be assigned to their specific loci on the basis of protein structural analysis. A clue to the encoding locus, HBA1 versus HBA2, is provided by the relative concentration of the alpha-globin mutant in the erythrocyte based on the 2- to 3-fold higher level of expression of the HBA2 gene (Liebhaber et al., 1986). However, since variables such as protein stability, efficiency of hemoglobin tetramer formation, and other factors can affect the steady-state levels of globin mutants, a definitive locus assignment must be directly determined. Cash et al. (1989) quantitated the expression of 2 alpha-globin structural mutants found in the Caribbean basin, Fort de France and Spanish Town, and showed that they are HBA1 and HBA2 mutants, respectively, on the basis of low or high expression.

Wilkie et al. (1991) described major polymorphic length variation in the terminal region of 16p (16p13.3) by physically linking the alpha-globin locus with probes to telomere-associated repeats. They found 3 alleles in which the alpha-globin genes lie 170 kb, 350 kb, or 430 kb from the telomere. The 2 most common alleles were found to contain different terminal segments, starting 145 kb distal to the alpha-globin genes. Beyond this boundary these alleles are nonhomologous, yet each contains sequences related to other, different chromosome termini. This chromosome-size polymorphism probably arose by occasional exchanges between the subtelomeric regions of nonhomologous chromosomes. Wilkie et al. (1991) raised the possibility that the high frequency of trisomy 16 may be related to this nonhomology of the 2 common 16pter alleles in their subtelomeric region.

Huisman et al. (1996) found that of the 141 codons of the alpha-globin genes (there are no sequence differences between the coding regions of the alpha-2 and alpha-1 genes), as many as 99 have been found to be mutated; for several, 3 or 4 mutations have been discovered, while 5 mutations are known for codons 23, 75, and 94, and 6 for codon 141. The mutations appear to occur at random; thus, either one of the 3 bases are replaced in the 199 known alpha-globin gene mutants.

The suggestion that alpha(+)-thalassemia has achieved a high frequency in some populations as a result of selection by malaria is based on a number of epidemiologic studies. In the southwest Pacific region, there is a striking geographic correlation between the frequency of alpha(+)-thalassemia and the endemicity of Plasmodium falciparum. Allen et al. (1997) undertook a prospective case-control study of children with severe malaria on the north coast of Papua New Guinea, where malaria transmission is intense and alpha(+)-thalassemia affects more than 90% of the population (homozygotes comprise approximately 55% and heterozygotes 37% of the population). Compared with normal children, the risk of having severe malaria was 0.40 in alpha(+)-thalassemia homozygotes and 0.66 in heterozygotes. Unexpectedly, the risk of hospital admission with infections other than malaria also was reduced to a similar degree in homozygotes (0.36) and heterozygotes (0.63). This clinical study demonstrated that a malaria resistance gene protects against disease caused by infections other than malaria. A reduction in mortality greater than that attributable directly to malaria had been observed after the prevention of malaria by insecticides, chemoprophylaxis, and insecticide-impregnated bed nets. Previous observations that direct malaria mortality cannot account for observed hemoglobin S gene frequencies suggest that the findings of this study may apply equally to other malaria resistance genes.

Fung et al. (1999) reported 3 cases of homozygous alpha-thalassemia who survived beyond the newborn period, all with hypospadias. Review of the literature identified 2 additional cases. Fung et al. (1999) suggested that the hypospadias may have been secondary to the in utero edema leading to failure of fusion of urogenital folds or due to defect or deletion of another gene at 16p13.3.

For a review of hydrops fetalis caused by alpha-thalassemia, see Chui and Waye (1998).

From work on the mouse model of alpha-thalassemia, Leder et al. (1999) demonstrated that a normal beta-globin allele can act as a modifying gene ameliorating the severity of alpha-thalassemia. They found that the phenotype of alpha-thalassemia was strongly influenced by the genetic background in which the mutation resided; when both mutant genes were on a chromosome derived from strain 129, the phenotype was severe, whereas it was mild when the gene was on a 129 chromosome and a C57BL/6 chromosome. Linkage mapping indicated that the modifying gene is very tightly linked to the beta-globin locus (lod score = 13.3). Furthermore, the severity of the phenotype correlated with the size of beta-globin-containing inclusion bodies, which accumulate in red blood cells and likely accelerate their destruction. The beta-major globin chains encoded by the 2 strains differed by 3 amino acids, one of which is a glycine-to-cysteine substitution at position 13. The cys13 should be available for interchain disulfide bridging and consequent aggregation between excess beta chains. This normal polymorphic variation between murine beta-globin chains could account for the modifying action of the unlinked beta-globin locus. Here, the variation in severity of the phenotype would not depend on a change in the ratio between alpha and beta chains but on the chemical nature of the normal beta chain, which is in excess. This work also indicated that modifying genes can be normal variants that, absent an apparent physiologic rationale, may be difficult to identify on the basis of structure alone.

De Gobbi et al. (2006) identified a pathogenetic mechanism underlying a variant form of the inherited blood disorder alpha-thalassemia. Association studies of affected individuals from Melanesia localized the disease trait to the telomeric region of human chromosome 16, which includes the alpha-globin gene cluster, but no molecular defects were detected by conventional approaches. After resequencing and using a combination of chromatin immunoprecipitation and expression analysis on a tiled oligonucleotide array, De Gobbi et al. (2006) identified a gain-of-function regulatory single-nucleotide polymorphism (rSNP) (141800.0218) in a nongenic region between the alpha-globin genes and their upstream regulatory elements. The rSNP creates a new promoter-like element that interferes with normal activation of all downstream alpha-like globin genes. De Gobbi et al. (2006) concluded that their work illustrates a strategy for distinguishing between neutral and functionally important rSNPs, and it also identifies a pathogenetic mechanism that could potentially underlie other genetic diseases.

Schoenfelder et al. (2010) found that mouse Hbb and Hba associated with hundreds of active genes from nearly all chromosomes in nuclear foci that they called 'transcription factories.' The 2 globin genes preferentially associated with a specific and partially overlapping subset of active genes. Schoenfelder et al. (2010) also noted that expression of the Hbb locus is dependent upon Klf1 (600599), while expression of the Hba locus is only partially dependent on Klf1. Immunofluorescence analysis of mouse erythroid cells showed that most Klf1 localized to the cytoplasm and that nuclear Klf1 was present in discrete sites that overlapped with RNAII foci. Klf1 knockout in mouse erythroid cells specifically disrupted the association of Klf1-regulated genes within the Hbb-associated network. Klf1 knockout more weakly disrupted interactions within the specific Hba network. Schoenfelder et al. (2010) concluded that transcriptional regulation involves a complex 3-dimensional network rather than factors acting on single genes in isolation.

N.B.: Alpha-globin variants for which it is unknown whether HBA1 or HBA2 is involved have arbitrarily been included in this entry. Carver and Kutlar (1995) listed 191 alpha-globin variants as of January 1995. The syllabus by Huisman et al. (1996) listed 199 alpha-chain hemoglobin variants as of January 1996. These included single-base mutations in the alpha-2 and alpha-1 genes as well as 2-base mutations. Not included in their syllabus were deletions in mutations that result in alpha-thalassemia, even if such a change (point mutation or frameshift) occurred in one of the coding regions of the gene. Information about the alpha-thalassemias was provided by Higgs et al. (1989).


History

Gandini et al. (1977) concluded, incorrectly as it turned out, that the alpha loci are on the long arm of chromosome 4 (4q28-q34). The conclusion was based on a finding of excessive synthesis of alpha chains in patients with duplication of this region.


ALLELIC VARIANTS ( 221 Selected Examples):

.0001 HEMOGLOBIN AICHI

HBA1, HIS50ARG
  
RCV000016986

.0002 HEMOGLOBIN ALBANY-GEORGIA

HEMOGLOBIN ALBANY-SUMA
HBA1, LYS11ASN
  
RCV000016987...

This was found in a clinically normal black female in Albany, Georgia (Webber et al., 1983). See also Shimasaki et al. (1983).


.0003 HEMOGLOBIN ANANTHARAJ

HBA1, LYS11GLU
  
RCV000016989

.0004 HEMOGLOBIN ANN ARBOR

HBA1, LEU80ARG
  
RCV000016990

.0005 HEMOGLOBIN ARYA

HBA1, ASP47ASN
  
RCV000016991...

.0006 HEMOGLOBIN ATAGO

HBA1, ASP85TYR
  
RCV000016992

.0007 HEMOGLOBIN ATTLEBORO

HBA1, SER138PRO
  
RCV000016993

.0008 HEMOGLOBIN AZTEC

HBA1, MET76THR
  
RCV000016994

.0009 HEMOGLOBIN BARI

HBA1, HIS45GLN
  
RCV000016995

.0010 HEMOGLOBIN BEIJING

HBA1, LYS16ASN
  
RCV000016996

.0011 HEMOGLOBIN BIBBA

HBA1, LEU136PRO
  
RCV000203221...

See Kleihauer et al. (1968). (This is actually an allelic variant of the HBA2 gene; see 141850.0030.)


.0012 HEMOGLOBIN BOURMEDES

HBA1, PRO37ARG
  
RCV000016998

.0013 MOVED TO 141850.0018


.0014 HEMOGLOBIN BROUSSAIS

HEMOGLOBIN J (BROUSSAIS)
HEMOGLOBIN TAGAWA I
HBA1, LYS90ASN
  
RCV000016999...

.0015 HEMOGLOBIN CATONSVILLE

HBA1, INS GLU, PRO37/GLU/THR38
  
RCV000017002

See Virshup et al. (1988). Moo-Penn et al. (1989) identified insertion of a glutamic acid residue between proline-37 and threonine-38 in an unstable hemoglobin variant. The PCR-amplified fragment of the variant gene showed insertion of a GAA codon. In the normal alpha-globin gene cluster, GAG is the codon for glutamic acid. Moo-Penn et al. (1989) suggested that this mutation may have resulted from nonhomologous nonallelic gene conversion.


.0016 HEMOGLOBIN CHAD

HBA1, GLU23LYS
  
RCV000017003

.0017 HEMOGLOBIN CHAPEL HILL

HBA1, ASP74GLY
  
RCV000017004

.0018 HEMOGLOBIN CHESAPEAKE

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG92LEU
  
RCV000017005...

See Clegg et al. (1966) and Harano et al. (1983). Polycythemia (ECYT7; 617981) is the only clinical feature. This was the first polycythemia-producing variant to be described (Charache et al., 1966).


.0019 HEMOGLOBIN CHIAPAS

HBA1, PRO114ARG
  
RCV000017006...

.0020 HEMOGLOBIN CHICAGO

HBA1, LEU136MET
  
RCV000017007

.0021 HEMOGLOBIN CHONGQING

HBA1, LEU2ARG
  
RCV000017008

.0022 HEMOGLOBIN CONTALDO

HBA1, HIS103ARG
  
RCV000017009

Unstable hemoglobin due to disruption of hydrogen bond between alpha 103 (his) and beta 108 (asn) (Sciarratta et al., 1984).


.0023 HEMOGLOBIN CORDELE

HBA1, ASP47ALA
  
RCV000017010

.0024 HEMOGLOBIN DAGESTAN

HBA1, LYS60GLU
  
RCV000017011

.0025 MOVED TO 141850.0075


.0026 HEMOGLOBIN DANESHGAH-TEHRAN

HBA1, HIS72ARG
  
RCV000017013

.0027 HEMOGLOBIN DENMARK HILL

HBA1, PRO95ALA
  
RCV000017014

.0028 HEMOGLOBIN DUAN

HBA1, ASP75ALA
  
RCV000017015

See Liang et al. (1981, 1988).


.0029 HEMOGLOBIN DUNN

HBA1, ASP6ASN
  
RCV000017016

.0030 HEMOGLOBIN ETOBICOKE

HBA1, SER84ARG
  
RCV000017017

.0031 HEMOGLOBIN EVANSTON

HBA1, TRP14ARG
  
RCV002508127

Honig et al. (1982) first described Hb Evanston in 2 black families. See also Moo-Penn et al. (1983).

Harteveld et al. (2004) found this rare variant alone and in the presence of common alpha-thalassemia deletions in 3 independent Asian cases.


.0032 HEMOGLOBIN FERNDOWN

HBA1, ASP6VAL
  
RCV000017019

.0033 HEMOGLOBIN FONTAINEBLEAU

HBA1, ALA21PRO
  
RCV000017020

Wajcman et al. (1989) found this substitution in an Italian family. The substitution produced no change in the stability or oxygen binding properties of the hemoglobin molecule. The electrophoretic properties were, furthermore, identical to those of Hb A, with the exception of isoelectric focusing in which the variant migrated like Hb A1c. Hb J(Nyanza), another substitution at position alpha-21, likewise causes no hematologic disorder.


.0034 HEMOGLOBIN FORT DE FRANCE

HBA1, HIS45ARG
  
RCV000017021

See Braconnier et al. (1977). Cash et al. (1989) confirmed that this is a mutant of the HBA1 gene.


.0035 HEMOGLOBIN G (AUDHALI)

HBA1, GLU23VAL
  
RCV000017022

.0036 MOVED TO 141850.0014


.0037 HEMOGLOBIN G (FORT WORTH)

HEMOGLOBIN FORT WORTH
HBA1, GLU27GLY
  
RCV000017023...

This variant was described in 2 black families. Unusually low (5%) concentration was found in heterozygotes, perhaps because of decreased ability of the abnormal alpha chain to form dimers with beta chains. See Schneider et al. (1971) and Carstairs et al. (1985).


.0038 HEMOGLOBIN G (GEORGIA)

HBA1, PRO95LEU
  
RCV000017025...

.0039 MOVED TO 141850.0054


.0040 HEMOGLOBIN G (NORFOLK)

HBA1, ASP85ASN
  
RCV000017026...

.0041 HEMOGLOBIN G (PEST)

HBA1, ASP74ASN
  
RCV000017027...

Hb G (Pest) and Hb J (Buda) (141850.0008), both alpha-chain mutants, occurred together in a Hungarian male with erythrocytosis. The occurrence of some normal Hb A in this man showed the existence of at least 2 alpha loci. See Brimhall et al. (1970, 1974) and Hollan et al. (1972). Using polymerase chain reaction (PCR) to amplify selectively alpha-1 and alpha-2-globin cDNAs, Mamalaki et al. (1990) then hybridized the cDNAs to synthetic oligonucleotides specific for either the normal or the mutated sequence. Using this approach, the alpha-globin structural mutants J-Buda and G-Pest were found to be encoded by the alpha-2 and the alpha-1-globin genes, respectively. The substitution in G-Pest was a change from GAC to AAC at codon 74.


.0042 HEMOGLOBIN G (TAICHUNG)

HEMOGLOBIN Q
HEMOGLOBIN Q (THAILAND)
HEMOGLOBIN MAHIDOL
HEMOGLOBIN ASABARA
HEMOGLOBIN KURASHIKI
HBA1, ASP74HIS
  
RCV000017028...

See Vella et al. (1958), Gammack et al. (1961), Lie-Injo et al. (1966, 1979); Blackwell and Liu (1970), Pootrakul and Dixon (1970), Lorkin et al. (1970), Iuchi et al. (1978), and Higgs et al. (1980). Zeng et al. (1992) demonstrated that the mutation is due to a GAC-to-CAC change in codon 74 of the HBA1 gene. They developed a simple and accurate method for diagnosis of the Hb Q (Thailand) variant based on restriction enzyme analysis.


.0043 HEMOGLOBIN G (WAIMANALO)

HEMOGLOBIN AIDA
HBA1, ASP64ASN
  
RCV000017034...

See Blackwell et al. (1973) and Bunn et al. (1978). Schiliro et al. (1991) found this variant in a Filipino mother and child living in Sicily. They showed no hematologic abnormalities.


.0044 HEMOGLOBIN GARDEN STATE

HBA1, ALA82ASP
  
RCV000017036

.0045 HEMOGLOBIN GRADY

HEMOGLOBIN DAKAR
HBA1, 3AA INS, 118THR-GLU-PHE119
   RCV000017038...

At the time it was first studied by Huisman et al. (1974), hemoglobin Grady was unique in having an insertion of threonine-glutamic acid-phenylalanine between amino acids 118 and 119 of the alpha chain. Several hemoglobins with deletions were then known (Leiden, Lyon, Freiburg, Niteroi, Tochigi, St. Antoine, Tours and Gun Hill). Scott et al. (1981) found no evidence of an extra (fifth) alpha gene. They argued, therefore, that if, as supposed, Hb Grady arose by unequal crossing over, the event occurred between alleles rather than between the separate alpha-1 and alpha-2 loci. The glu-phe-thr insertion is a repeat of normal residues 116, 117 and 118. See Cleek et al. (1983). Substitution of glutamine for histidine at alpha 112 was thought to be the change in hemoglobin Dakar; however, on restudy the hemoglobin was found to be identical to Hb Grady (Garel et al., 1976).


.0046 HEMOGLOBIN GUANGZHOU

HEMOGLOBIN HANGZHOU
HBA1, ASP64GLY
  
RCV000017040...

.0047 HEMOGLOBIN GUIZHOU

HEMOGLOBIN UTSUNOMIYA
HBA1, PRO77ARG
  
RCV000017042...

.0048 HEMOGLOBIN HANDA

HEMOGLOBIN MUNAKATA
HBA1, LYS90MET
  
RCV000017044...

.0049 HEMOGLOBIN HANDSWORTH

HBA1, GLY18ARG
  
RCV000017037

.0050 HEMOGLOBIN HARBIN

HBA1, LYS16MET
  
RCV000017046

.0051 HEMOGLOBIN HEKINAN

HBA1, GLU27ASP
  
RCV000017047...

See Harano et al. (1988). Using dot-blot analysis of amplified DNA with (32)p-labeled probes, Zhao et al. (1990) located the mutation in codon 27 of the minor alpha-1 globin gene and showed that the change involved a GAG (glutamic acid)-to-GAT (aspartic acid) mutation. Their patients were 3 Chinese women from Macau.

In Thailand, Ngiwsara et al. (2004) described 2 unrelated cases of compound heterozygosity for Hb Hekinan and alpha-thalassemia.


.0052 HEMOGLOBIN HIROSAKI

HBA1, PHE43LEU
  
RCV000017048

See Ohba et al. (1975, 1978).


.0053 HEMOGLOBIN HOBART

HBA1, HIS20ARG
  
RCV000017049

.0055 HEMOGLOBIN I

HEMOGLOBIN I (BURLINGTON)
HEMOGLOBIN I (PHILADELPHIA)
HEMOGLOBIN I (SKAMANIA)
HEMOGLOBIN I (TEXAS)
HBA1, LYS16GLU
  
RCV000017051...

Fast hemoglobin. Substitution of aspartic acid for lysine at alpha 16 was first reported by Murayama (1962). However, Crick pointed out that this substitution could not be accomplished by change in one base. Restudy by Beale and Lehmann (1965) and by Schneider et al. (1966) showed substitution of glutamic acid for lysine. Hemoglobin I was thought to show sickling but this has been shown to be due to faulty technique (Schneider et al., 1967). See Rucknagel et al. (1955), Schwartz et al. (1957), Itano and Robinson (1959, 1960), Ranney et al. (1962), O'Brien et al. (1964), Thompson et al. (1965), Schneider et al. (1966), Bowman and Barnett (1967), Baur (1968), Labossiere and Vella (1971), Fleming et al. (1978), and Liebhaber et al. (1984). The hemoglobin I mutation is curious in that the mutation is present in HBA2 (141850.0011) as well as in HBA1.


.0056 MOVED TO 141850.0015


.0057 HEMOGLOBIN IWATA

HBA1, HIS87ARG
  
RCV000017056

.0058 HEMOGLOBIN J (ABIDJAN)

HBA1, GLY51ASP
  
RCV000017057

.0059 HEMOGLOBIN J (ANATOLIA)

HBA1, LYS61THR
  
RCV000017058

.0060 HEMOGLOBIN J (BIRMINGHAM)

HEMOGLOBIN J (MEERUT)
HBA1, ALA120GLU
  
RCV000017059...

.0061 MOVED TO 141850.0008


.0062 HEMOGLOBIN J (CAMAGUEY)

HBA1, ARG141GLY
  
RCV000017061

See Martinez et al. (1978). Romero et al. (1995) found this hemoglobin variant in 3 Spanish families. The original description by Martinez et al. (1978) was in a Cuban family of Spanish ancestry.


.0063 HEMOGLOBIN J (CAPE TOWN)

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG92GLN
  
RCV000017062...

See Botha et al. (1966), Harano et al. (1983), and Lambridis et al. (1986). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0064 HEMOGLOBIN J (CUBUJUQUI)

HBA1, ARG141SER
  
RCV000017063

.0065 HEMOGLOBIN J (HABANA)

HBA1, ALA71GLU
  
RCV000017064

.0066 HEMOGLOBIN J (KUROSH)

HBA1, ALA19ASP
   RCV000017065

.0067 HEMOGLOBIN J (MEDELLIN)

HBA1, GLY22ASP
  
RCV000017066

.0068 HEMOGLOBIN J (NYANZA)

HBA1, ALA21ASP
  
RCV000017067

.0069 MOVED TO 141850.0010


.0070 HEMOGLOBIN J (PARIS 1)

HEMOGLOBIN J (ALJEZUR)
HBA1, ALA12ASP
  
RCV000017068...

.0071 HEMOGLOBIN J (RAJAPPEN)

HBA1, LYS90THR
  
RCV000017070...

.0072 HEMOGLOBIN J (ROVIGO)

HBA1, ALA53ASP
  
RCV000017071

.0073 MOVED TO 141850.0036


.0074 HEMOGLOBIN J (SINGA)

HBA1, ASN78ASP
  
RCV000017072...

.0075 HEMOGLOBIN J (SINGAPORE)

HBA1, ASN78ASP AND ALA79GLY
  
RCV000017072...

Since no simple frameshift mechanism could be imagined, the possibility of 2 separate mutations was favored by Blackwell et al. (1972), who suggested that 2 separate hemoglobins, appropriately called Hb J (Singa) and Hb J (Pore), will be discovered eventually. Double mutation on the same chromosome would seem more likely than crossing-over in a compound heterozygote since the 2 codons involved are contiguous.


.0076 HEMOGLOBIN J (TASHIKUERGAN)

HBA1, ALA19GLU
  
RCV000017074

See Houjun et al. (1984). Li et al. (1990) found this variant in populations in the Silk Road region of China.


.0077 HEMOGLOBIN J (TONGARIKI)

HBA1, ALA115ASP
  
RCV000017075

See Gajdusek et al. (1967) and Beaven et al. (1972). A homozygous individual had only anomalous hemoglobin suggesting the existence of only one alpha locus in Melanesians (Abramson et al., 1970).


.0078 HEMOGLOBIN J (TORONTO)

HBA1, ALA5ASP
  
RCV000017076...

.0079 HEMOGLOBIN JACKSON

HBA1, LYS127ASN
  
RCV000017077

.0080 HEMOGLOBIN KARACHI

HBA1, ALA5PRO
  
RCV000017078

.0081 HEMOGLOBIN KARIYA

HBA1, LYS40GLU
  
RCV000017079

.0082 HEMOGLOBIN KAWACHI

HBA1, PRO44ARG
  
RCV000017080

.0083 HEMOGLOBIN KOELLIKER

HEMOGLOBIN F (KOELLIKER)
HBA1, ARG141DEL
  
RCV000017081...

Not a genetic change. The C-terminal amino acid, 141, of the alpha chain (arginine) is missing, probably from the action of a carboxypeptidase present in normal plasma. This unusual fast hemoglobin is observed in persons with hemolysis. The change can occur in fetal hemoglobin also (Kohne et al., 1977). See Marti et al. (1967) and Schiliro et al. (1982).


.0084 HEMOGLOBIN KOKURA

HEMOGLOBIN BEILINSON
HEMOGLOBIN MICHIGAN-I
HEMOGLOBIN MICHIGAN-II
HEMOGLOBIN L (GASLINI)
HEMOGLOBIN TAGAWA II
HEMOGLOBIN UMI
HEMOGLOBIN MUGINO
HEMOGLOBIN YUKUHASHI-2
HBA1, ASP47GLY
  
RCV000017083...

.0085 MOVED TO 141850.0012


.0086 HEMOGLOBIN L (PERSIAN GULF)

HBA1, GLY57ARG
  
RCV000017092

.0087 HEMOGLOBIN LEGNANO

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG141LEU
  
RCV000017093...

See Mavilio et al. (1978). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0088 HEMOGLOBIN LE LAMENTIN

HBA1, HIS20GLN
  
RCV000017094

.0089 HEMOGLOBIN LILLE

HBA1, ASP74ALA
  
RCV000017095

.0090 HEMOGLOBIN LOIRE

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ALA88SER
  
RCV000017096...

This variant was discovered in a 10-year-old Algerian boy born in Loire. The child had erythrocytosis (ECYT7; 617981) and microcytosis, the latter being due to iron deficiency (Baklouti et al., 1988).


.0091 HEMOGLOBIN LUXEMBOURG

HBA1, TYR24HIS
  
RCV000017097

Groff et al. (1989) found this substitution in association with mild hemolytic anemia and increased indirect bilirubinemia in a family originating from the Netherlands.


.0092 HEMOGLOBIN M (BOSTON)

HEMOGLOBIN GOTHENBURG
HEMOGLOBIN M (GOTHENBURG)
HEMOGLOBIN M (OSAKA)
HEMOGLOBIN M (KISKUNHALAS)
HBA1, HIS58TYR
  
RCV000017098...

The aberrant hemoglobins associated with methemoglobinemia (see 617973) are referred to as hemoglobin M. Most of the hemoglobin M variants have substitutions of histidine at alpha 58, alpha 87, beta 63, or beta 92. These 4 amino acids are critical to the binding of the heme group. The exception is hemoglobin M (Milwaukee-1). See Gerald et al. (1957), Hansen et al. (1960), Gerald and Efron (1961), Betke (1962), Hayashi et al. (1964), Shimizu et al. (1965), Suzuki et al. (1965), Hollan et al. (1967), and Pulsinelli et al. (1973).


.0093 HEMOGLOBIN M (IWATE)

HEMOGLOBIN M (KANKAKEE)
HEMOGLOBIN M (OLDENBURG)
HEMOGLOBIN M (SENDAI)
HBA1, HIS87TYR
  
RCV000017103...

Hb Iwate was the first variant hemoglobin found in Japan (Shibata et al., 1960). Familial cyanosis had been recognized for about 200 years in the prefecture of Iwate in Honshu, where about 70 affected persons were identified in the 1950s. It was called 'kuchikuro,' or 'blackmouth.' In each form of methemoglobinemia (see 617973), the heme iron is stabilized in the ferric form. Patients with the Hb M alpha forms are cyanotic at birth; those with the Hb M beta forms are usually not cyanotic until they are 3 months of age. Horst et al. (1987) showed that the Iwate mutation involves the alpha-1 globin gene. Specifically, they demonstrated a CAC-to-TAC mutation in codon 87 of that gene. They showed that the Iwate mutation can be identified directly on RsaI digestion. See Meyering et al. (1960), Shibata et al. (1961), Gerald and Efron (1961), Miyaji et al. (1962), Heller (1962), Heller et al. (1962), Tonz et al. (1962), Shibata (1964), Tamura (1964), Shimizu et al. (1965), Pik and Tonz (1966), Maggio et al. (1981), and Mayne et al. (1986).

Ameri et al. (1999) likewise determined that the molecular defect in 2 patients with Hb M (Kankakee) was his87 to tyr in the HBA1 gene. The proportion of Hb M (Kankakee) observed was higher than that predicted for an alpha-1-globin variant. They presented evidence suggesting that the greater-than-expected proportion of Hb M (Kankakee) results from preferential association of the electronegative beta-globin chains with the alpha-(M)-globin chains that are more electropositive than normal alpha-globin chains.


.0094 MOVED TO 141850.0047


.0095 HEMOGLOBIN MATSUE-OKI

HBA1, ASP75ASN
  
RCV000017107

.0096 HEMOGLOBIN MEMPHIS

HBA1, GLU23GLN
  
RCV000017108

Substitution of glutamine for glutamic acid at alpha 23. A hemoglobin S homozygote who also carries this abnormal hemoglobin has a mild form of sickle cell anemia. See Kraus et al. (1965, 1967) and Cooper et al. (1973).


.0097 HEMOGLOBIN MEXICO

HEMOGLOBIN J
HEMOGLOBIN J (MEXICO)
HEMOGLOBIN J (PARIS 2)
HEMOGLOBIN UPPSALA
HBA1, GLN54GLU
  
RCV000017109...

.0098 HEMOGLOBIN MILLEDGEVILLE

ERYTHROCYTOSIS 7, INCLUDED
HBA1, PRO44LEU
  
RCV000017114...

See Honig et al. (1980). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0099 HEMOGLOBIN MIYANO

HBA1, THR41SER
  
RCV000017115

.0100 HEMOGLOBIN MIZUSHI

HBA1, ASP75GLY
  
RCV000017116

No hematologic abnormality. See Iuchi et al. (1980).


.0101 HEMOGLOBIN MOABIT

HBA1, LEU86ARG
  
RCV000017117

.0102 MOVED TO 141850.0013


.0103 MOVED TO 141850.0033


.0104 HEMOGLOBIN NECKER ENFANTS-MALADES

HBA1, HIS20TYR
  
RCV000017118

This variant was detected by chromatography in the course of screening diabetics for Hb A1c (Wajcman et al., 1980).


.0105 HEMOGLOBIN NIGERIA

HBA1, SER81CYS
  
RCV000017119

.0106 HEMOGLOBIN NOKO

HBA1, MET76LYS
  
RCV000017120

.0107 HEMOGLOBIN NORFOLK

HEMOGLOBIN J (NORFOLK)
HEMOGLOBIN KAGOSHIMA
HEMOGLOBIN NISHIK
HBA1, GLY57ASP
  
RCV000017121...

.0108 HEMOGLOBIN NOUAKCHOTT

HBA1, PRO114LEU
  
RCV000017125

.0109 HEMOGLOBIN NUNOBIKI

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG141CYS
  
RCV000017126...

This hemoglobin showed an extremely high oxygen affinity. The patient, who had 'marginal erythrocytosis' (ECYT7; 617981), was shown to have 13.1% Hb Nunobiki (Shimasaki, 1985).


.0110 HEMOGLOBIN O (INDONESIA)

HEMOGLOBIN O (BUGINESE-X)
HEMOGLOBIN BUGINESE-X
HEMOGLOBIN O (OLIVIERE)
HEMOGLOBIN OLIVIERE
HBA1, GLU116LYS
  
RCV000017127...

See Lie-Injo and Sadono (1958), Baglioni and Lehmann (1962), and Sansone et al. (1970).

Daud et al. (2001) investigated the occurrence of hemoglobin O (Indonesia) in related ethnic populations of the Indonesian archipelago. Nineteen individuals heterozygous for this variant were identified in 4 ethnic populations. The level of Hb O (Indonesia) in 17 of the individuals was 11.6 +/- 1.0%, significantly lower than the expected 17 to 22%, indicating the instability of Hb O (Indonesia).


.0111 HEMOGLOBIN O (PADOVA)

HBA1, GLU30LYS
  
RCV000017132...

See Vettore et al. (1974), Kilinc et al. (1985), and Martin et al. (1990). Schnedl et al. (1997) showed that the silent hemoglobin O Padova mutation causes an additional peak on high performance liquid chromatography (HPLC) and falsely low HbA(1c) values (glycated hemoglobin) when measured by HPLC. HPLC is the gold standard for evaluation of glycated hemoglobin in diabetes mellitus.


.0112 HEMOGLOBIN OGI

HEMOGLOBIN QUEENS
HBA1, LEU34ARG
  
RCV000017133...

See Sugihara et al. (1982), Moo-Penn et al. (1982), and Yongsuwan et al. (1987). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0113 HEMOGLOBIN OLEANDER

HBA1, GLU116GLN
  
RCV000017135

.0114 HEMOGLOBIN OTTAWA

HEMOGLOBIN SIAM
HBA1, GLY15ARG
  
RCV000017136...

See Vella et al. (1974) and Pootrakul et al. (1974).

Yodsowan et al. (2000) studied this variant in a 21-year-old Thai female and her mother. Turbpaiboon et al. (2002) reported a fourth case of Hb Siam in a healthy Thai female and concluded that there is no alpha-thalassemic effect of the variant.


.0115 HEMOGLOBIN OWARI

HBA1, VAL121MET
  
RCV000017138...

This is a neutral-to-neutral change; it was detected in the course of mass screening by isoelectric focusing (Harano et al., 1986).


.0116 HEMOGLOBIN PERSPOLIS

HBA1, ASP64TYR
  
RCV000017139

.0117 HEMOGLOBIN PETAH TIKVA

HBA1, ALA110ASP
  
RCV000017140...

.0118 HEMOGLOBIN PONTOISE

HEMOGLOBIN J (PONTOISE)
HBA1, ALA63ASP
  
RCV000017141...

.0119 HEMOGLOBIN PORT PHILLIP

HBA1, LEU91PRO
  
RCV000017143

.0120 MOVED TO 141850.0055


.0121 HEMOGLOBIN Q (INDIA)

HBA1, ASP64HIS
  
RCV000017144...

.0122 HEMOGLOBIN Q (IRAN)

HBA1, ASP75HIS
  
RCV000017145

.0123 MOVED TO 141850.0052


.0124 HEMOGLOBIN REIMS

HBA1, GLU23GLY
  
RCV000017146

.0125 HEMOGLOBIN RUSS

HBA1, GLY51ARG
  
RCV000017147...

See Huisman and Sydenstricker (1962) and Reynolds and Huisman (1966). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0126 HEMOGLOBIN SASSARI

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ASP126HIS
  
RCV000017148...

Masala et al. (1987) first described this variant as an electrophoretically slow-moving hemoglobin in 2 brothers affected by erythrocytosis (ECYT7; 617981) with slight microcytosis. In a large screening program involving 20,000 people in the city of Sassari and its surrounding area in Sardinia, Masala (1992) found the variant in 3 other apparently unrelated subjects. A male of German origin was identified by Bardakdjian-Michau et al. (1990) as a carrier of the same mutation. Sanna et al. (1994) demonstrated that the adult variant has increased oxygen affinity, a dramatic reduction of homotropic interactions, and a significant decrease of the effect of 2,3-diphosphoglycerate (35% lower than that observed for Hb A). The fetal variant also showed increased oxygen affinity compared with normal Hb F and an almost abolished heme-heme interaction.

Paglietti et al. (1998) demonstrated that Hb Sassari results from a GAC (asp)-to-CAC (his) mutation in the HBA1 gene.


.0127 HEMOGLOBIN SAVARIA

HBA1, SER49ARG
  
RCV000017149...

.0128 HEMOGLOBIN SAWARA

HBA1, ASP6ALA
  
RCV000017150

No pathologic effects were observed (Sumida et al., 1973; Sumida, 1975).


.0129 MOVED TO 141850.0028


.0130 HEMOGLOBIN SETIF

HBA1, ASP94TYR
  
RCV000017151

See Wajcman et al. (1972), Nozari et al. (1977), Al-Awamy et al. (1985), and Abdo (1989). Schiliro et al. (1991) found this hemoglobin variant in Sicily.

Dincol et al. (2003) stated that Hb Setif was first described in an Algerian family (Wajcman et al., 1972) and subsequently in Iranian, African, Saudi Arabian, and Maltese populations. They identified the variant in a Turkish family. Heterozygotes were asymptomatic.


.0131 HEMOGLOBIN SHAARE ZEDEK

HBA1, LYS56GLU
  
RCV000017152

.0132 HEMOGLOBIN SHENYANG

HBA1, ALA26GLU
  
RCV000017153

.0133 HEMOGLOBIN SHIMONOSEKI

HEMOGLOBIN HIKOSHIMA
HBA1, GLN54ARG
  
RCV000017154...

.0134 HEMOGLOBIN SHUANGFENG

HBA1, GLU27LYS
  
RCV000017156

.0135 HEMOGLOBIN SINGAPORE

HBA1, ARG141PRO
  
RCV000017157

.0136 MOVED TO 141850.0009


.0137 HEMOGLOBIN ST. CLAUDE

HBA1, LYS127THR
  
RCV000017158

.0138 HEMOGLOBIN ST. LUKE'S

HBA1, PRO95ARG
  
RCV000017159...

See Bannister et al. (1972).

Felice (2003) cited evidence that Hb St. Luke's is a mutation of the HBA1 gene.


.0139 HEMOGLOBIN STANLEYVILLE-II

HBA1, ASN78LYS
  
RCV000017160

See Van Ros et al. (1968), North et al. (1980), and Rhoda et al. (1983). Costa et al. (1991) described a family with 1 homozygote and 3 heterozygotes for Hb Stanleyville II. The pattern of restriction fragments demonstrated an associated 3.7-kb alpha-globin gene deletion.


.0140 HEMOGLOBIN STRUMICA

HEMOGLOBIN SERBIA
HBA1, HIS112ARG
  
RCV000017161...

.0141 MOVED TO 141850.0007


.0142 MOVED TO 141850.0017


.0143 HEMOGLOBIN SUNSHINE SETH

HBA1, ASP94HIS
  
RCV000017163...

.0144 HEMOGLOBIN SURESNES

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG141HIS
  
RCV000017164...

See Poyart et al. (1976) and Saenz et al. (1978). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0145 HEMOGLOBIN SWAN RIVER

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ASP6GLY
  
RCV000017165...

See Moo-Penn et al. (1987). Harano et al. (1996) observed this variant in a Japanese man with mild polycythemia (ECYT7; 617981).


.0146 MOVED TO 141850.0037


.0147 HEMOGLOBIN THAILAND

HBA1, LYS56THR
  
RCV000017166

.0148 HEMOGLOBIN TITUSVILLE

HBA1, ASP94ASN
  
RCV000017167

.0149 HEMOGLOBIN TOKONAME

HBA1, LYS139THR
  
RCV000017168

.0150 HEMOGLOBIN TORINO

HBA1, PHE43VAL
  
RCV000017169

.0151 HEMOGLOBIN TOTTORI

HBA1, GLY59VAL
  
RCV000017170

.0152 HEMOGLOBIN TOYAMA

HEINZ BODY HEMOLYTIC ANEMIA
HBA1, LEU136ARG
  
RCV000017171...

This hemoglobin variant is associated with congenital Heinz body anemia (Ohba et al., 1987).


.0153 HEMOGLOBIN TWIN PEAKS

HBA1, LEU113HIS
  
RCV000017173...

See Guis et al. (1985). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0154 HEMOGLOBIN UBE-2

HBA1, ASN68ASP
  
RCV000017176...

See Miyaji et al. (1967). In Turkey, Bilginer et al. (1984) found the first instance of Hb Ube-2 outside Japan. It occurred in other members of the family.

Cotton et al. (2000) found this rare variant during universal neonatal screening. The patients had normal hematologic parameters. The variant was found in twins and an older sister and in the father; both parents were of Belgian ancestry.

Shin et al. (2002) described the disorder in a Taiwanese subject.


.0155 HEMOGLOBIN UBE-4

HBA1, GLU116ALA
  
RCV000017177...

.0156 HEMOGLOBIN WESTMEAD

HBA1, HIS122GLN
  
RCV000985723...

This variant was found in a Chinese woman (Fleming et al., 1980). See Liang et al. (1988).


.0157 HEMOGLOBIN WINNIPEG

HBA1, ASP75TYR
  
RCV000017179...

See Vella et al. (1973) and Nakatsuji et al. (1983). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0158 HEMOGLOBIN WOODVILLE

HBA1, ASP6TYR
  
RCV000017180

Since alpha-6 asp is involved in salt linkage with alpha-127 lys of the same chain, the increased oxygen affinity of hemoglobin variants at this position probably reflects loss of this salt bridge in the deoxy state. Similar changes have been observed for Hb St. Claude which also cannot form the salt bridge because of substitution of threonine for lysine at alpha-127. See Como et al. (1986).


.0159 HEMOGLOBIN WUMING

HEMOGLOBIN J (WENCHANG-WUMING)
HBA1, LYS11GLN
  
RCV000017174...

See Zeng et al. (1981). Qualtieri et al. (1995) found this fast-migrating hemoglobin variant in a pregnant woman living in Italy.


.0160 HEMOGLOBIN ZAMBIA

HBA1, LYS60ASN
  
RCV000017181

.0161 HEMOGLOBIN BELLIARD

HBA1, LYS56ASN
  
RCV000017182

.0162 HEMOGLOBIN TONOSHO

HBA1, ALA110THR
  
RCV000017183

In the course of measuring hemoglobin A1c by automated cation exchange high performance liquid chromatography, Ohba et al. (1990) detected a new alpha-chain variant: substitution of alanine by threonine at position 110. The abnormal alpha chain comprised about 14% of the total alpha chain.


.0163 HEMOGLOBIN FUKUTOMI

HBA1, ASP126VAL
  
RCV000017184

This hemoglobin, which has a high affinity for oxygen, was detected in a Japanese male during a screening survey. The proband was a 53-year-old man with liver cirrhosis and hemorrhagic gastritis (Hidaka et al., 1990).


.0164 HEMOGLOBIN PORT HURON

HBA1, LYS56ARG
  
RCV000017185

Zwerdling et al. (1991) investigated the structural abnormality of a putative Hb E detected in an African American family with no apparent Asian ancestry. The tryptic peptide map formed by high performance liquid chromatography showed that the electrophoretic variant was indeed the beta glu26-to-lys mutation of Hb E. In addition, however, the tryptic map showed an abnormal alpha peptide. The second mutation was a substitution of arginine for lysine at residue 56 of the alpha chain. The variant was clinically silent.


.0165 MOVED TO 141850.0023


.0166 HEMOGLOBIN PAVIE

HBA1, VAL135GLU
  
RCV000017186

.0167 HEMOGLOBIN QUESTEMBERT

HBA1, SER131PRO
  
RCV000017187

See Wajcman et al. (1990, 1993).


.0168 HEMOGLOBIN THIONVILLE

HBA1, NH2 EXTENSION, VAL1GLU
  
RCV000017188

See Vasseur et al. (1990). Substitution of glutamic acid for valine as the first residue in the mature protein is accompanied by retention of the initiator methionine residue. This may be the only known hemoglobin variant with an NH2-extension in the alpha-globin chain. Hb Marseille (141900.0171), Hb Doha (141900.0069), and Hb South Florida (141900.0266) are examples of hemoglobin variants with an NH2-extension due to retention of the initiator methionine in the beta-globin chain. Each is due to mutation in the first or second residue of the mature protein. Vasseur et al. (1992) found that elongation of the NH2-terminus of the alpha-chain, due to inhibition of cleavage of the initiator methionine which is then acetylated, modifies the 3-dimensional structure of hemoglobin at a region that is known to have an important role in the allosteric regulation of oxygen binding. Hb Thionville has a lowered affinity for oxygen. In contrast, response to 2,3-diphosphoglycerate is normal.

This variant was numbered based on the first amino acid of the mature protein. In the gene-based system of counting, this variant is VAL2GLY.


.0169 HEMOGLOBIN KANAGAWA

ERYTHROCYTOSIS 7, INCLUDED
HBA1, LYS40MET
  
RCV000017189...

In the course of a high performance liquid chromatography survey of Hb A1c, Miyashita et al. (1992) detected a new hemoglobin in a 70-year-old Japanese male with cerebral infarction and erythremia (ECYT7; 617981). Further studies revealed a lys40-to-met mutation. The variant showed increased oxygen affinity, decreased heme-heme interaction, and a lowered 2,3-diphosphoglycerate effect.

(Erythremia, a now almost obsolete synonym for polycythemia and erythrocytosis, means increased red blood cell mass.)


.0170 HEMOGLOBIN TURRIFF

HBA1, LYS99GLU
  
RCV000017190

In a diabetic woman of Scottish ancestry, Langdown et al. (1992) detected a new hemoglobin variant in the course of determining Hb A1c by high performance liquid chromatography. The abnormal hemoglobin chromatographed with the Hb A1c fraction. Family studies showed that a lys99-to-glu mutation, which was not associated with any hematologic disturbance, had occurred de novo. An AAG-to-GAG mutation was presumed and was not assigned to either the alpha-2- or alpha-1-globin chain.

The Hb A(1c) level in the patient of Langdown et al. (1992) was found to be very high. In a Japanese individual, Harano et al. (2003) likewise found an unexpectedly high Hb A(1c) level as measured by an automatic Hb A(1c) analyzer and found by DNA sequencing a change in the first nucleotide of codon 99 (AAG-GAG) of the Hb A1 gene.


.0171 HEMOGLOBIN ZAIRE

HBA1, 15-BP TANDEM REPEAT
   RCV000017191

Hemoglobin Zaire was found in a 36-year-old patient from Zaire during a systematic hemoglobin study. Wajcman et al. (1992) demonstrated that the abnormality was the insertion of 5 amino acids--his, leu, pro, ala, glu--between glu116 and phe117 of the alpha-globin chain. This sequence represented a tandem repeat of the 5 amino acid residues from 112 through 116, located at the end of the GH corner of the molecule. Hemoglobin Grady (141800.0045) involves the insertion of 3 amino acids as repeats of residues 116, 117 and 118. Unequal crossing over between alleles rather than between the separate alpha-1 and alpha-2 loci was thought to be the mechanism in that case and possibly in the case of Hb Zaire as well.


.0172 HEMOGLOBIN LUTON

HBA1, HIS89LEU
  
RCV000017192

In a newborn infant and the father, a 35-year-old Pakistani man, Williamson et al. (1992) described a new hemoglobin with high oxygen affinity. The high affinity hemoglobin mutation was identified by HPLC peptide mapping and amino acid sequencing; leucine was substituted for histidine at amino acid position 89. The mutation occurred at the end of the F helix (FG1), a part of the hemoglobin structure critical in determining oxygen affinity since it is directly linked to the heme iron through the proximal histidine residue F8. This was the first example of a mutation at this position of the alpha chain of hemoglobin, although there were 2 high affinity mutants that involved the structurally equivalent amino acid (beta94 asp) of the beta chain: Hb Barcelona (beta94 his; 141900.0016) and Hb Bunbury (beta94 asn; 141900.0035). The new hemoglobin was called Hb Luton for the name of the hospital where the proband was originally treated. The proband was a neonate in whom 2 abnormal hemoglobin bands were found, the 2 bands being the mutant forms of fetal and adult hemoglobins containing the anomalous alpha globin. The father had microcytosis as well as mild polycythemia and was shown to have an accompanying alpha-thalassemia trait due to deletion of a single alpha-globin gene.


.0173 HEMOGLOBIN OZIERI

HBA1, ALA71VAL
  
RCV000017193

During a screening for hemoglobinopathies in Sardinia, Ferranti et al. (1993) found a new 'silent' hemoglobin variant in 5 apparently unrelated newborn babies. The variant was detected by means of isoelectric focusing (IEF), and further study revealed a valine for alanine substitution at position 71 of the alpha-globin chain. The substitution indicated that a C-to-T transition had occurred in the GCG codon for alanine which contains one of the 35 unmethylated CpG dinucleotides of the HBA1 gene. This observation brought to 13 the number of variants due to mutation in the CpGs of the HBA1 gene and raised the possibility that unmethylated CpGs, like methylated ones, may be hotspots for mutations.


.0174 HEMOGLOBIN ADANA

HEMOGLOBIN H DISEASE, NONDELETIONAL, INCLUDED
HBA1, GLY59ASP
  
RCV000017194...

In 3 Turkish children with severe thalassemia, Curuk et al. (1992) found a GGC-to-GAC mutation in codon 59 of the HBA1 gene resulting in a replacement of glycine by aspartic acid. The combination of an alpha-thal-1 deletion with the unstable Hb Adana resulted in a severe type of Hb H disease (613978).


.0175 HEMOGLOBIN AL-AIN ABU DHABI

HBA1, GLY18ASP
  
RCV000017195

During a routine program of hemoglobin screening performed in the United Arab Emirates, Abbes et al. (1992) found an electrophoretically fast-moving variant in a 9-month-old girl and in several members of her family. Amino acid sequencing demonstrated that the new variant had a gly18-to-asp substitution. Its functional properties were normal.


.0176 HEMOGLOBIN POITIERS

HBA1, HIS45ASP
  
RCV000017196

Hb Poitiers was discovered by Bardakdjian et al. (1994) in a 9-year-old French Caucasian boy who suffered from chronic anemia. The molecular defect consists of a missense mutation at codon 45 of the HBA1 gene, changing histidine to aspartate. Hb Poitiers displays a 2-fold increased oxygen affinity, a slightly decreased heme-heme interaction, and a slightly faster autooxidation rate. In adult hemoglobin (Hb A), the histidine residue at position 45 of the alpha-globin gene is the only polar contact between the heme group and globin. This position, however, seems to allow for moderate variation without dramatic consequences on the function of hemoglobin. His45 is replaced by glutamine in Hb Bari (141800.0009) and by arginine in Hb Fort de France (141800.0034).


.0177 MOVED TO 141850.0062


.0178 HEMOGLOBIN CAEN

HBA1, VAL132GLY
  
RCV000017197

Wajcman et al. (1993) discovered the Hb Caen variant in a 25-year-old French Caucasian woman suffering from a mild chronic hemolytic anemia. Trypsin degradation of the isolated hemoglobin alpha chain followed by high performance liquid chromatography indicated that the valine residue at position 132 was replaced by glycine.


.0179 HEMOGLOBIN YUDA

HBA1, ALA130ASP
  
RCV000017198

Hb Yuda was discovered in a 65-year-old Japanese female with noninsulin-dependent diabetes mellitus (Fujisawa et al., 1992). Gas phase Edman degradation indicated that the abnormal hemoglobin alpha chain has a substitution of aspartic acid for alanine at residue 130. Hb Yuda has a very low oxygen affinity and slightly decreased cooperative subunit interaction.


.0180 HEMOGLOBIN CAPA

HBA1, ASP94GLY
  
RCV000017199

Hb Capa was discovered in a 28-year-old female in Turkey who was being treated for chronic iron deficiency anemia. The hemoglobin showed abnormal electrophoretic mobility and was mildly unstable in a heat denaturation test. The molecular change was a GAC-to-GGC transition in codon 94, resulting in substitution of glycine for aspartic acid. Three other substitutions of asp-94 are known: Hb Setif (141800.0130), Hb Titusville (141800.0148), and Hb Sunshine Seth (141800.0143). All 4 variants exhibit mild instability.


.0181 HEMOGLOBIN MONTEFIORE

HBA1, ASP126TYR
  
RCV000017200

Wajcman et al. (1992) demonstrated an asp126-to-tyr change in the HBA1 gene in an individual of Puerto Rican descent. At physiologic pH (7.4), the oxygen binding of the patient's red blood cells revealed a 40% reduction. Hb Montefiore appears to have lower cooperativity than other characterized alpha-126 mutants: aspartic acid is replaced by asparagine in Hb Tarrant (141800.0146), by histidine in Hb Sassari (141800.0126), and by valine in Hb Fukutomi (141800.0163).


.0182 HEMOGLOBIN ROUEN

HEMOGLOBIN ETHIOPIA
ERYTHROCYTOSIS 7, INCLUDED
HBA1, TYR140HIS
  
RCV000017201...

A tyr140-to-his mutation in the HBA1 gene was discovered and characterized in a French patient with polycythemia (ECYT7; 617981) by Wajcman et al. (1992) and in a newborn baby of Ethiopian descent by Webber et al. (1992). This mutation provides an example of an alteration of the C terminus of the alpha chain, a region involved in the mechanisms of allosteric regulation. Hb Rouen has increased oxygen affinity and decreased cooperativity. A complementary tyr145-to-his mutation (Hb Bethesda; 141900.0022) in the hemoglobin beta chain has more dramatic effects, suggesting that the alpha and beta chains play unequal roles in the overall function of hemoglobin.


.0183 HEMOGLOBIN MELUSINE

HBA1, PRO114SER
  
RCV000017203

Hb Melusine was found in an Algerian patient during a systematic screening for hemoglobinopathies in Luxembourg. Using isoelectric focusing and reverse phase high performance liquid chromatography (RP-HPLC), Wajcman et al. (1993) determined that the molecular mutation at amino acid position 114 of the HBA1 gene changed the residue from proline to serine.


.0184 HEMOGLOBIN TAYBE

HBA1, THR38DEL OR THR39DEL
  
RCV000017204

Girodon et al. (1992) reported the characterization of Hb Taybe, a hemoglobin variant discovered in a young Arabic woman suffering since birth from a severe and highly regenerative hemolytic anemia. DNA amplification and sequencing of the HBA1 gene indicated a 3-bp deletion (encoding threonine) at amino acid position 38 or 39. This variant increases the hydrophobicity of the amino acid chain, and it is quite unstable.


.0185 HEMOGLOBIN CEMENELUM

HBA1, ARG92TRP
  
RCV000017205

Wajcman et al. (1994) described a missense mutation involving the same codon as that involved in Hb Chesapeake (141800.0018), the first high oxygen affinity hemoglobin variant to be described in association with polycythemia (Charache et al., 1966). Hb Chesapeake has an arg92-to-leu substitution; Hb Cemenelum has an arg92-to-trp substitution. Hb J (Cape Town) (141800.0063) has a substitution (arg92-to-gln) in the same codon. Hb Cemenelum was discovered in a French diabetic patient with no hematologic abnormalities. The purified abnormal hemoglobin, like Hb J (Cape Town), displayed only a 1.5- to 2-fold increased oxygen affinity. The findings demonstrate that the degree to which the functional properties are altered by changes in key residues at the alpha-beta interface depends upon the specific residue occupying this position.


.0186 HEMOGLOBIN RAMONA

HBA1, TYR24CYS
  
RCV000017206

Hb Ramona was accidentally detected by isoelectrofocusing in a pregnant woman of part Spanish descent; its mobility was slightly faster than that of Hb A. A TAT-to-TGT change was found at codon 24, corresponding to a replacement of tyrosine by cysteine.


.0187 HEMOGLOBIN TATRAS

HBA1, LYS7ASN
  
RCV000017207...

In a 72-year-old woman born in Czechoslovakia, Wajcman et al. (1994) found a lys7-to-asn mutation when investigating the basis for an abnormal level of Hb A1c. No abnormal hematologic features were observed.


.0188 HEMOGLOBIN LISBON

HBA1, GLU23ASP
  
RCV000017208

In a 31-year-old man of Portuguese origin who had suffered from diabetes mellitus since the age of 15 years, Wajcman et al. (1994) found an abnormal hemoglobin during measurement of Hb A1c by an isoelectrofocusing study. There were no abnormal hematologic features.


.0189 HEMOGLOBIN ROANNE

HBA1, ASP94GLU
  
RCV000017209

Kister et al. (1995) described a new hemoglobin variant in a 73-year-old woman from Roanne in central France. She suffered from mild chronic hemolytic anemia. An asp94-to-glu substitution was found in the alpha-1 chain. Aspartate-94 is involved in several contacts, both in the deoxy- and oxy-structures of the hemoglobin.


.0190 HEMOGLOBIN MALHACEN

HBA1, ALA123SER
  
RCV000017210

Kazanetz et al. (1995) observed this variant hemoglobin in an adult male in Granada, Spain, who was evaluated because of severe iron deficiency anemia. Sequencing of the HBA1 gene showed 2 nucleotide changes. One was a simple polymorphism, as both GCG and GCT code for alanine (at codon 120). The second mutation was a GCC-to-TCC change at codon 123 resulting in replacement of alanine by serine. The replacement caused slight differences in the IEF and reversed-phase HPLC experiments, but the stability of the hemoglobin was normal. Family studies were not performed; thus, whether the 2 mutations were in coupling or repulsion was not known.


.0191 HEMOGLOBIN TUNIS-BIZERTE

HBA1, LEU129PRO
  
RCV000017211...

In 3 members of a Tunisian family, Darbellay et al. (1995) identified a leu129-to-pro substitution in the HBA1 gene by sequencing the entirety of the HBA2 and HBA1 genes. In the heterozygous state, the variant was manifested by microcytosis, whereas the homozygous state showed moderate anemia with marked microcytosis.


.0192 MOVED TO 141850.0068


.0193 HEMOGLOBIN BOIS GUILLAUME

HBA1, ALA65VAL
  
RCV000017212

By tiny abnormalities observed during isoelectrofocusing, Wajcman et al. (1995) identified this electrophoretically silent variant in 3 members of a Caucasian-French family. This hemoglobin was the first alpha-chain variant that involved position 64. In the beta chain, the corresponding position, E14, is also occupied by an alanine residue; in Hb Seattle (141900.0256), it is replaced by aspartic acid (ala70-to-asp).


.0194 HEMOGLOBIN MANTES-LA-JOLIE

HBA1, ALA79THR
  
RCV000017213

Wajcman et al. (1995) found this variant hemoglobin during a systematic study of the iron status in a 6-month-old baby and his mother who originated from Chad in North Central Africa.


.0195 HEMOGLOBIN MOSELLA

HBA1, ALA111THR
  
RCV000017214

Wajcman et al. (1995) found this variant in a 35-year-old pregnant woman of Caucasian origin who lived in Luxembourg. The abnormal Hb was also found in one of her daughters.


.0196 HEMOGLOBIN FUCHU-I

HBA1, HIS72TYR
  
RCV000017215

At the Fuchu Municipal Medical Center in Tokyo, Harano et al. (1995) identified 2 Hb variants in the course of assaying glycated hemoglobin, Hb A(1c), of the peripheral blood by cation exchange HPLC. Structural analyses demonstrated that 1 patient had a his72-to-tyr substitution and the other an asn97-to-his substitution (141800.0197) of the alpha-globin chain. These were named Hb Fuchu-I and Hb Fuchu-II, respectively. Both were healthy adults.


.0197 HEMOGLOBIN FUCHU-II

HBA1, ASN97HIS
  
RCV000017216

.0198 HEMOGLOBIN GOUDA

HBA1, HIS72GLN
  
RCV000017217

In a 54-year-old Dutch woman under treatment for diabetes mellitus, Giordano et al. (1996) incidentally found a silent alpha-chain variant on testing for glycated hemoglobin. A CAC-to-CAA transversion was predicted to result in substitution of glutamine for histidine at residue 72 in the HBA1 gene.


.0199 HEMOGLOBIN J (BISKRA)

HBA1, 24-BP DEL
  
RCV000017218

Wajcman et al. (1998) described Hb J-Biskra, a variant hemoglobin consisting of deletion of 24 nucleotides from the HBA1 gene and 8 amino acid residues from the alpha-globin chain: residues 50-57, 51-58, or 52-59. This variant was mildly unstable in vitro only, and there was no hematologic or biochemical evidence of hemolysis in affected family members. Wajcman et al. (1998) stated that this was the largest deletion reported to that time in a hemoglobin molecule that is expressed at an almost normal level in the red blood cell.


.0200 HEMOGLOBIN GODAVARI

HBA1, PRO95THR
  
RCV000017219

Hb Godavari is the fourth example of a substitution involving neutral residues at position 95 of the alpha-1 chain. In all of these variants, the electrophoretic pattern suggested that the structural modification unmasks a charged residue in the alpha-1/beta-2 contact area. The other examples are Hb Denmark Hill, pro95 to ala (141800.0027); Hb G (Georgia), and pro95 to leu (141800.0038). Hb Godavari shared the same electrophoretic properties as these variants, but displayed minimal alterations of the oxygen-binding properties. Wajcman et al. (1998) identified Hb Godavari in 2 families of different ethnic origin. The first case, found in the Netherlands, involved an Indian patient. The second case was identified a few months later in an African family from Mali, living in France.


.0201 HEMOGLOBIN OITA

HBA1, HIS45PRO
  
RCV000017220

Hamaguchi et al. (1998) reported a neutral (silent) hemoglobin variant, designated Hb Oita, in which a change from CAC to CCC caused a his45-to-pro substitution. In Hb Bari (141800.0009), his45 is replaced by gln. In Hb Fort de France (141800.0034), his45 is replaced by arg. In Hb Portiers (141800.0176), his45 is replaced by asp.


.0202 HEMOGLOBIN AGHIA SOPHIA

HEMOGLOBIN H DISEASE, NONDELETIONAL, INCLUDED
HBA1, VAL62DEL
  
RCV000017221...

In a Greek child with Hb H disease (613978), Traeger-Synodinos et al. (1999) found deletion of codon 62 of the alpha-1 gene, leading to alpha-plus-thalassemia. Codon 62 encodes a valine residue at the E11 alpha helix, which is located in the interior of the heme pocket. Substitutions of this valine with other amino acid residues in the alpha as well as beta polypeptide chains lead, in the heterozygous carrier, either to Hb M disease or to congenital nonspherocytic hemolytic anemia. Traeger-Synodinos et al. (1999) assumed that deletion of val at position 62 disrupted the conformation of the alpha chain to such an extent that the mutated subunit was rapidly removed by proteolysis. The final result was an alpha-thalassemia phenotype rather than an unstable hemoglobin syndrome. This conclusion was supported by the apparent absence of an abnormal alpha chain in the peripheral blood of the patient. Hb Evans (141850.0006) is a val62-to-met mutation of the HBA2 gene and was found in a patient with mild hemolytic anemia. Four amino acid substitutions at position 67(E11)val of the beta chain lead to instability of the Hb tetramer and an anemia of variable degrees in the heterozygotes. One of these substitutions, val67 to glu (141900.0163), results in the stable Hb M-Milwaukee-I.


.0203 HEMOGLOBIN CHAROLLES

HBA1, HIS103TYR
  
RCV000017222...

Lacan et al. (1999) detected Hb Charolles in a 46-year-old patient who presented with microcytosis and hypochromia. It was easily detected by isoelectrofocusing and high performance liquid chromatography. It accounted for 11% of the total hemoglobin. The amino acid change resulted from a CAC-to-TAC change in codon 103.


.0204 HEMOGLOBIN ROUBAIX

HBA1, VAL55LEU
  
RCV000017223

In a French family from the north of France, Prehu et al. (1999) found a new HBA1 variant in 5 members. The variant was initially detected during measurement of glycated hemoglobin in a woman originating from Roubaix. Codon 55 in exon 2 was found to have a heterozygous change from GTT (val) to CTT (leu). This was a neutral variant.


.0205 HEMOGLOBIN DOUALA

HBA1, SER3PHE
  
RCV000017224

In a woman from Cameroon, Prehu et al. (2001) identified a new hemoglobin variant, designated Hb Douala, with a C-to-T transition (TCT-TTT) in the HBA1 gene, resulting in a ser3-to-phe (S3F) amino acid substitution. The patient was also heterozygous for Hb S (141900.0243) and for a 3.7-kb deletional alpha-thalassemia.


.0206 THALASSEMIA, ALPHA-PLUS

HBA1, 21-BP INS-DUP
  
RCV000017225...

In a patient of Iranian descent with the hematologic profile of alpha-plus-thalassemia characterized by mild microcytosis, Waye et al. (2001) found a 21-bp insertion/duplication that gave rise to a predicted alpha-globin chain containing a duplication of amino acid residues 93-99.


.0207 THALASSEMIA, ALPHA-PLUS

HBA1, 33-BP DEL
   RCV000017226

In a patient of Greek descent with the hematologic profile of alpha-plus-thalassemia characterized by mild microcytosis, Waye et al. (2001) found a 33-bp deletion in the HBA1 gene resulting in a predicted alpha-globin chain missing amino acid residues 64-74.


.0208 HEMOGLOBIN DELFZICHT

HBA1, ASN9LYS
  
RCV000017227

Harteveld et al. (2002) reported a 69-year-old Dutch woman monitored for diabetes mellitus in whom Hb A(L1c) analysis revealed a clinically silent hemoglobin variant, asn9 to lys (N9K), due to an AAC-to-AAG transversion in heterozygous state. The mutation was identical to that found at the same position in the HBA2 gene that leads to a variant named Hb Park Ridge (141850.0048).


.0209 HEMOGLOBIN SARATOGA SPRINGS

HBA1, LYS40ASN
  
RCV000017228

In a 34-year-old Caucasian male of Swedish ancestry who lived in Saratoga Springs, New York, Hoyer et al. (2003) identified a hemoglobin variant with abnormal oxygen affinity, designated Hb Saratoga Springs. There was no family history of erythrocytosis. The patient had no smoking history. A change of codon 40 of the HBA1 gene from AAG to AAC resulted in a lys40-to-asn (K40N) change. Lys40 is replaced by glu in Hb Kariya (141800.0081), and by met in Hb Kanagawa (141800.0169).


.0210 HEMOGLOBIN DIE

HBA1, VAL93ALA
  
RCV000017229

In a 7-year-old girl living near the town of Die in southeast France, Lacan et al. (2004) identified a val93-to-ala (V93A) mutation in the HBA1 gene. The family was of French Caucasian origin.


.0211 HEMOGLOBIN BEZIERS

HBA1, LYS99ASN
  
RCV000017230

In a 72-year-old woman of French Caucasian origin living in the city of Beziers in the south of France, Lacan et al. (2004) identified a lys99-to-asn (K99N) mutation in the HBA1 gene. The variant was found during the determination of Hb A(1c) by high performance liquid chromatography (HPLC) in this diabetic patient. Hematologic data were normal, without hepatomegaly or splenomegaly.


.0212 HEMOGLOBIN BUFFALO

HBA1, HIS89GLN
  
RCV000017231...

In a 32-year-old Somali male living in the Netherlands who was being monitored for diabetes mellitus, Harteveld et al. (2004) identified Hb S (141900.0243) in heterozygous state and a heterozygous C-to-G transversion in the HBA1 gene, resulting in a his89-to-gln (H89Q) substitution. The H89Q mutation had previously been described in a Yemenite woman and 2 apparently unrelated Somali males (Hoyer et al., 2002), and had been designated Hb Buffalo. No hematologic abnormality had been associated with the allelic variant in this or other cases. In addition to Hb Buffalo, 4 amino acid substitutions had been reported at codon 89: Hb Luton (his89 to leu; 141800.0172), Hb Villeurbanne (his89 to tyr; 141800.0213), Hb Tokyo (his89 to pro; 141800.0214), and Hb Tamano (his89 to arg; 141800.0215).


.0213 HEMOGLOBIN VILLEURBANNE

HBA1, HIS89TYR
  
RCV000017232

Deon et al. (1997) identified a his89-to-tyr (H89Y) mutation in the HBA1 gene as the defect in Hb Villeurbanne.


.0214 HEMOGLOBIN TOKYO

HBA1, HIS89PRO
  
RCV000017233

Harteveld et al. (2004) stated that Hb Tokyo carries a his89-to-pro (H89P) mutation in the HBA1 gene.


.0215 HEMOGLOBIN TAMANO

HBA1, HIS89ARG
  
RCV000017234

Harteveld et al. (2004) stated that Hb Tamano carries a his89-to-arg (H89R) mutation in the HBA1 gene.


.0216 HEMOGLOBIN RICCARTON

HBA1, GLY51SER
  
RCV000017235...

In a 4-year-old Caucasian boy investigated for fatigue and microcytosis, Brennan et al. (2005) found a GGC-to-AGC transition at codon 51 in the HBA1 gene, resulting in a gly51-to-ser substitution (G51S). The mutation was thought not to be the cause of the microcytosis as it was detected also in the boy's father who had normal red cell indices.


.0217 HEMOGLOBIN OEGSTGEEST

HBA1, CYS104SER
  
RCV000017236

In an 8-year-old black female of Surinamese origin with a mild alpha-thalassemia phenotype, Harteveld et al. (2005) identified homozygosity for a TGC-to-AGC transversion in the HBA1 gene, resulting in a cys104-to-ser substitution. Cysteine-104 is involved in alpha/beta globin contact and had been described as a critical amino acid of the HBA2 chain when substituted by a tyrosine (cys104 to tyr) in Hb Sallanches (141850.0031).


.0218 HEMOGLOBIN LAMEN ISLAND

HBA1, 149709T-C
  
RCV000017237

De Gobbi et al. (2006) studied 148 individuals from Melanesia with alpha-thalassemia, including 5 with HbH disease, in whom none of the theretofore described molecular defects could be found. The pattern of inheritance suggested that individuals with HbH disease were homozygous for a codominant defect, referred to as (alpha-alpha)T, causing alpha-thalassemia with a predicted genotype of (alpha-alpha)T/(alpha-alpha)T. In situ RNA hybridization in erythroid cells from an affected individual from Lamen Island (Vanuatu) detected substantially fewer nuclear transcripts from the alpha-globin genes than from the beta-globin genes. DNA FISH in 2 affected individuals showed that the alpha-globin cluster was present at its normal location of chromosome 16, and no deletions or chromosomal rearrangements were detected in any of these individuals. Linkage analysis showed that the disease phenotype in individuals was derived from telomeric chromosome 16 T. Only the C allele of SNP195 (C or T, located at coordinate 149709) segregated with thalassemia in the affected families and showed complete association with the (alpha-alpha)T haplotype. This allele was not found in a separate analysis of 131 nonthalassemic Melanesian individuals. SNP195 changes the sequence 5-prime-TAATAA-3-prime (T allele) to 5-prime-TGATAA-3-prime (C allele), potentially creating a new binding site for the key erythroid transcription factor GATA1. GATA1 binds at the C allele of SNP195 in vivo. SNP195 creates a new promoter-like element between the upstream regulatory elements and their cognate promoters. This element, when activated, causes significant downregulation of the alpha-D, alpha-2, and alpha-1 genes that lie downstream, thereby causing alpha-thalassemia.


.0219 ALPHA-THALASSEMIA

HBA1, 1-BP DEL, 354C
  
RCV000759777...

In a newborn of mixed black and Chinese descent who carried the Southeast Asian alpha-0-thal deletion, Eng et al. (2006) also found a 1-bp deletion of cysteine from codon 78 in exon 2 of the HBA1 gene, resulting in a frameshift and premature termination at codon 83.


.0220 HEMOGLOBIN AUCKLAND

HBA1, HIS87ASN
  
RCV000017239

In a 27-year-old woman with mild compensated hemolytic anemia, Brennan and Matthews (1997) identified Hb Auckland, a his87-to-asn substitution in the HBA1 gene.


.9999 HEMOGLOBIN ALPHA VARIANTS, MOLECULAR DEFECT UNKNOWN

HEMOGLOBIN J (INDIA). See Raper (1957).

HEMOGLOBIN J (MALAYA). See Lehmann (1962).

HEMOGLOBIN K (CALCUTTA). Fast hemoglobin. See Lehmann (1962).

HEMOGLOBIN K (MADRAS). See Ager and Lehmann (1957).

HEMOGLOBIN KARAMOJO. See Allbrook et al. (1965).

HEMOGLOBIN L (BOMBAY). See Sukumaran and Pik (1965).

HEMOGLOBIN M (RESERVE). Reduced oxygen affinity and decreased reversible oxygen-binding capacity (Overly et al., 1967).

HEMOGLOBIN N, ALPHA TYPE. An alpha chain anomaly was deduced from molecular hybridization experiments with canine hemoglobin (Silvestroni et al., 1963). Other hemoglobin N variants have a beta change.

HEMOGLOBIN NICOSIA. See Fessas et al. (1965).


See Also:

REFERENCES

  1. Abbes, S., M'Rad, A., Fitzgerald, P. A., Dormer, P., Blouquit, Y., Kister, J., Galacteros, F., Wajcman, H. Hb Al-Ain Abu Dhabi [alpha-18 (A16) gly-to-asp]: a new hemoglobin variant discovered in an Emiratee family. Hemoglobin 16: 355-362, 1992. [PubMed: 1428941, related citations] [Full Text]

  2. Abdo, M. Z. Hb Setif (alpha94(G1)asp-to-tyr) in a Saudi Arabian family. Hemoglobin 13: 737-742, 1989. [PubMed: 2634670, related citations] [Full Text]

  3. Abramov, A., Lehmann, H., Robb, L. Hb Shaare Zedek (alpha56 E5 lys-to-glu). FEBS Lett. 113: 235-237, 1980. [PubMed: 7389895, related citations] [Full Text]

  4. Abramson, R. K., Rucknagel, D. L., Shreffler, D. C., Saave, J. J. Homozygous Hb J Tongariki: evidence for only one alpha chain structural locus in Melanesians. Science 169: 194-196, 1970. [PubMed: 5427353, related citations] [Full Text]

  5. Adams, J. G., III, Winter, W. P., Rucknagel, D. L., Spencer, H. H. Biosynthesis of hemoglobin Ann Arbor: evidence for catabolic and feedback regulation. Science 176: 1427-1429, 1972. [PubMed: 5033650, related citations] [Full Text]

  6. Adams, J. G., III. Hemoglobin Ann Arbor: disturbance in the coordinated biosynthesis of globin chains? Ann. N.Y. Acad. Sci. 241: 232-241, 1974. [PubMed: 4530655, related citations] [Full Text]

  7. Ager, J. A. M., Lehmann, H., Vella, F. Haemoglobin 'Norfolk': a new haemoglobin found in an English family. Brit. Med. J. 2: 539-541, 1958. [PubMed: 13572830, related citations] [Full Text]

  8. Ager, J. A. M., Lehmann, H. Haemoglobin K in an East Indian and his family. Brit. Med. J. 1: 1449-1450, 1957. [PubMed: 13436817, related citations] [Full Text]

  9. Ahmed, A., Naqvi, S., Ehsanullah, S., Zaidi, Z. H. Abnormal hemoglobin 11 - Hb (Karachi), an alpha chain abnormality at position 5 ala-pro. J. Pak. Med. Assoc. 36: 206-208, 1986. [PubMed: 3097343, related citations]

  10. Al-Awamy, B. H., Niazi, G. A., Naeem, M. A., Wilson, J. B., Huisman, T. H. J. Hemoglobin Handsworth or alpha18(A16)gly-to-arg in a Saudi newborn. Hemoglobin 9: 183-186, 1985. [PubMed: 4030381, related citations] [Full Text]

  11. Al-Awamy, B., Niazi, G. A., Wilson, J. B., Huisman, T. H. J. Hb Setif or alpha94(G1)asp-to-tyr observed in a Saudi Arabian family. Hemoglobin 9: 87-90, 1985. [PubMed: 3997545, related citations] [Full Text]

  12. Alberti, R., Mariuzzi, G. M., Artibani, L., Bruni, E., Tentori, L. A new haemoglobin variant: J-Rovigo alpha 53 (E-2) alanine to aspartic acid. Biochim. Biophys. Acta 342: 1-4, 1974. [PubMed: 4824923, related citations] [Full Text]

  13. Allbrook, D., Barnicot, N. A., Dance, N., Lawler, S. D., Marshall, R., Mungai, J. Blood groups, haemoglobin and serum factors of the Karamojo. Hum. Biol. 37: 217-237, 1965. [PubMed: 4953733, related citations]

  14. Allen, S. J., O'Donnell, A., Alexander, N. D. E., Alpers, M. P., Peto, T. E. A., Clegg, J. B., Weatherall, D. J. Alpha(+)-thalassemia protects children against disease caused by other infections as well as malaria. Proc. Nat. Acad. Sci. 94: 14736-14741, 1997. [PubMed: 9405682, images, related citations] [Full Text]

  15. Ameri, A., Fairbanks, V. F., Yanik, G. A., Mahdi, F., Thibodeau, S. N., McCormick, D. J., Boxer, L. A., McDonagh, K. T. Identification of the molecular genetic defect of patients with methemoglobin M Kankakee (M-Iwate), alpha-87 (F8) his-to-tyr: evidence for an electrostatic model of alpha-M hemoglobin assembly. Blood 94: 1825-1826, 1999. [PubMed: 10477710, related citations]

  16. Andersen, C. B. F., Torvund-Jensen, M., Nielsen, M. J., de Oliveira, C. L. P., Hersleth, H.-P., Andersen, N. H., Pedersen, J. S., Andersen, G. R., Moestrup, S. K. Structure of the haptoglobin-haemoglobin complex. Nature 489: 456-459, 2012. [PubMed: 22922649, related citations] [Full Text]

  17. Assum, G., Griese, E.-U., Horst, J. Detection of a restriction site polymorphism within the human alpha-globin gene complex. Hum. Genet. 69: 144-146, 1985. [PubMed: 2982725, related citations] [Full Text]

  18. Baglioni, C., Lehmann, H. Chemical heterogeneity of haemoglobin O. Nature 196: 229-231, 1962. [PubMed: 13968953, related citations] [Full Text]

  19. Baglioni, C. A chemical study of hemoglobin-Norfolk. J. Biol. Chem. 237: 69-74, 1962. [PubMed: 13863929, related citations]

  20. Baklouti, F., Baudin-Chich, V., Kister, J., Marden, M., Teyssier, G., Poyart, C., Delaunay, J., Wajcman, H. Increased oxygen affinity with normal heterotropic effects in hemoglobin Loire (alpha88 (F9) ala-to-ser). Europ. J. Biochem. 177: 307-312, 1988. [PubMed: 3142772, related citations] [Full Text]

  21. Baklouti, F., Francina, A., Dorleac, E., Baudin-Chich, V., Gombaud-Saintonge, G., Plauchu, H., Wajcman, H., Delaunay, J., Godet, J. Asymptomatic association of hemoglobin Dunn (alpha-6(A4)asp-to-asn) and hemoglobin O-Arab (beta-121[GH4]glu-to-lys) in a Moroccan man. Am. J. Hemat. 27: 253-256, 1988. [PubMed: 3354560, related citations] [Full Text]

  22. Bannister, W. H., Grech, J. L., Plese, C. F., Smith, L. L., Barton, B. P., Wilson, J. B., Reynolds, C. A., Huisman, T. H. J. Hemoglobin St. Luke's or alpha 95 arg (G2). Europ. J. Biochem. 29: 301-307, 1972. [PubMed: 5081617, related citations] [Full Text]

  23. Barclay, G. P. T., Charlesworth, D., Lehmann, H. Abnormal haemoglobins in Zambia: a new hemoglobin Zambia alpha-60 (E9) lysine to asparagine. Brit. Med. J. 4: 595-596, 1969. [PubMed: 5356548, related citations] [Full Text]

  24. Bardakdjian, J., Kister, J., Wajcman, H., Boulard, P., Bohn, B., Blouquit, Y., Galacteros, F. Hb Poitiers [alpha45 (CE3) his-to-asp]: a new hemoglobin variant with a two-fold increase in oxygen affinity. Hemoglobin 18: 1-9, 1994. [PubMed: 8195004, related citations] [Full Text]

  25. Bardakdjian-Michau, J., Galacteros, F., Craescu, C. T. Functional and NMR studies of Hb Sassari (asp126-alpha-to-his): role of the inter-subunit contacts in the affinity control of human hemoglobin. Biochim. Biophys. Acta 1041: 250-253, 1990. [PubMed: 2268670, related citations] [Full Text]

  26. Bardakdjian-Michau, J., Rosa, J., Galacteros, F., Lancelot, M., Marquart, F. X. Hb Reims (alpha23(B4)glu-to-gly): a new alpha chain variant with slightly decreased stability. Hemoglobin 13: 733-735, 1989. [PubMed: 2634669, related citations] [Full Text]

  27. Barg, R., Barton, P., Caine, A., Clements, R. L., Ferguson-Smith, M. A., Malcolm, S., Morrison, N., Murphy, C. S. Regional localization of the human alpha-globin gene to the short arm of chromosome 16 (16p12-pter) using both somatic cell hybrids and in situ hybridization. (Abstract) Cytogenet. Cell Genet. 32: 252-253, 1982.

  28. Barton, P., Malcolm, S., Murphy, C., Ferguson-Smith, M. A. Localization of the human alpha-globin gene cluster to the short arm of chromosome 16 (16p12-16pter) by hybridization in situ. J. Molec. Biol. 156: 269-278, 1982. [PubMed: 6177863, related citations] [Full Text]

  29. Baudin, V., Baklouti, F., Wajcman, H., Delaunay, J. Hemoglobin Aichi (alpha50 (CE8) his-to-arg) in a French Caucasian patient. Hemoglobin 11: 145-149, 1987. [PubMed: 3623974, related citations] [Full Text]

  30. Baur, E. W. Hb alpha 2 glu beta 2(Hb I) in a Caucasian family: independent mutation or common origin? Humangenetik 6: 368-372, 1968. [PubMed: 5713622, related citations]

  31. Beale, D., Lehmann, H. Abnormal haemoglobins and the genetic code. Nature 207: 259-261, 1965. [PubMed: 5886214, related citations] [Full Text]

  32. Beaven, G. H., Hornabrook, R. W., Fox, R. H., Huehns, E. R. Occurrence of heterozygotes and homozygotes for the alpha-chain haemoglobin variant Hb-J (Tongariki) in New Guinea. Nature 235: 46-47, 1972. [PubMed: 4550394, related citations] [Full Text]

  33. Beckman, L., Christodoulou, C., Fessas, P., Loukopoulos, D., Kaltsoya, A., Nilsson, L.-O. A Swedish haemoglobin variant. Acta Genet. Statist. Med. 16: 362-370, 1966. [PubMed: 6012906, related citations] [Full Text]

  34. Beksedic, D., Rajevska, T., Lorkin, P. A., Lehmann, H. Hb Serbia (alpha112 his-to-arg), a new haemoglobin variant from Yugoslavia. FEBS Lett. 58: 226-229, 1975. [PubMed: 1225585, related citations] [Full Text]

  35. Beretta, A., Prato, V., Gallo, E., Lehmann, H. Haemoglobin Torino--alpha 43 (CD 1) phenylalanine replaced by valine. Nature 217: 1016-1018, 1968. [PubMed: 5643522, related citations] [Full Text]

  36. Betke, K. Haemoglobin-M: Typen und ihre Differenzierung (Uebersicht). In: Lehmann, H.; Betke, K.: Haemoglobin-Colloquium. Stuttgart: Georg Thieme Verlag (pub.) 1962. Pp. 39-47.

  37. Bilginer, A., Lehmann, H., Arcasoy, A. Hemoglobin Ube-2 (alpha68 asn-to-asp) observed in a Turkish family. Hemoglobin 8: 189-191, 1984. [PubMed: 6469696, related citations] [Full Text]

  38. Blackwell, R. Q., Boon, W. H., Liu, C. S., Weng, M. I. Hemoglobin J Singapore: alpha-78 asn to asp; alpha-79 ala to gly. Biochim. Biophys. Acta 278: 482-490, 1972. [PubMed: 5085670, related citations] [Full Text]

  39. Blackwell, R. Q., Jim, R. T. S., Tan, T. G. H., Weng, M. I., Liu, C. S., Wang, C. L. Hemoglobin G Waimanalo: alpha 64 asp-to-asn. Biochim. Biophys. Acta 322: 27-33, 1973. [PubMed: 4744336, related citations] [Full Text]

  40. Blackwell, R. Q., Liu, C. S. Hemoglobin G Taichung: alpha74 asp-to-his. Biochim. Biophys. Acta 200: 70-75, 1970. [PubMed: 5410724, related citations] [Full Text]

  41. Blackwell, R. Q., Wong, H. B., Wang, C.-L., Weng, M. I., Liu, C.-S. Hemoglobin J-Meerut: alpha 120 ala-to-glu. Biochim. Biophys. Acta 351: 7-12, 1974. [PubMed: 4600474, related citations]

  42. Botha, M. C., Beale, D., Issacs, W. A., Lehmann, H. Hemoglobin J Cape Town. Nature 212: 792-794, 1966. [PubMed: 5988206, related citations] [Full Text]

  43. Bowman, B. H., Barnett, D. R. Amino-acid substitution in haemoglobin I (Texas variant). Nature 214: 499, 1967. [PubMed: 6032878, related citations] [Full Text]

  44. Bowman, J. E., Bloom, R., Chen, S. S., Webber, B. B., Wilson, J. B., Kutlar, F., Kutlar, A., Huisman, T. H. J. Hb Chicago or alpha136 (H19) leu-to-met and a G-gamma-G-gamma-globin gene arrangement in a black family. Hemoglobin 10: 495-505, 1986. [PubMed: 3781866, related citations] [Full Text]

  45. Boyer, S. H., Crosby, E. F., Fuller, G. F., Ulenurm, L., Buck, A. A. A survey of hemoglobins in the Republic of Chad and characterization of hemoglobin Chad: alpha 23 glu-to-lys. Am. J. Hum. Genet. 20: 570-578, 1968. [PubMed: 5714528, related citations]

  46. Braconnier, F., Gacon, G., Thillet, J., Wajcman, H., Soria, J., Maigret, P., Labie, D., Rosa, J. Hemoglobin Fort de France (alpha 45(CD3) his replaced by arg beta-2): a new variant with increased oxygen affinity. Biochim. Biophys. Acta 493: 228-233, 1977. [PubMed: 18205, related citations] [Full Text]

  47. Bradley, T. B., Jr., Boyer, S. H., Allen, F. H., Jr. Hopkins-2 hemoglobin: a revised pedigree with data on blood and serum groups. Bull. Johns Hopkins Hosp. 108: 75-79, 1961.

  48. Brennan, S. O., Chan, T., Obele, M., George, P. M. Hb Riccarton (alpha-51(CE9)gly-to-ser): a variant arising from a novel mutation in the alpha-1 gene. Hemoglobin 29: 61-64, 2005. [PubMed: 15768556, related citations]

  49. Brennan, S. O., Matthews, J. R. D. Hb Auckland (alpha87(F8)his-to-asn): a new mutation of the proximal histidine identified by electrospray mass spectrometry. Hemoglobin 21: 393-403, 1997. [PubMed: 9322075, related citations] [Full Text]

  50. Brennan, S. O., Tauro, G. P., Melrose, W., Carrell, R. W. Haemoglobin Port Phillip: alpha 91 (FG3) leu-to-pro, a new unstable hemoglobin. FEBS Lett. 81: 115-117, 1977. [PubMed: 902765, related citations] [Full Text]

  51. Breuning, M. H., Madan, K., Verjaal, M., Wijnen, J. T., Meera Khan, P., Pearson, P. L. Human alpha-globin maps to pter-p13.3 in chromosome 16 distal to PGP. Hum. Genet. 76: 287-289, 1987. [PubMed: 3036689, related citations] [Full Text]

  52. Brimhall, B., Duerst, M., Hollan, S. R., Stenzel, P., Szelenyi, J., Jones, R. T. Structural characterizations of hemoglobins J-Buda (alpha 61 (E10) lys-to-asn) and G-Pest (alpha 74 (EF3) asp-to-asn). Biochim. Biophys. Acta 336: 344-360, 1974.

  53. Brimhall, B., Hollan, S., Jones, R. T., Koler, R. D., Stocklen, Z., Szelenyi, J. G. Multiple alpha-chain loci for human hemoglobin. (Abstract) Clin. Res. 18: 184, 1970.

  54. Brittenham, G., Lozoff, B., Harris, J. W., Kan, Y. W., Dozy, A. M., Nayudu, N. V. S. Alpha globin gene number: population and restriction endonuclease studies. Blood 55: 706-708, 1980. [PubMed: 6244018, related citations]

  55. Buckle, V. J., Higgs, D. R., Wilkie, A. O. M., Super, M., Weatherall, D. J. Localisation of human alpha globin to 16p13.3-pter. J. Med. Genet. 25: 847-849, 1988. [PubMed: 3236367, related citations] [Full Text]

  56. Bunn, H. F., Altman, A. J., Stangland, K., Firshein, S. I., Forget, B., Schmidt, G. J., Jones, R. T. Hemoglobins Aida (alpha 64 asp-to-asn) and D-Los Angeles (beta 121 glu-to-gln) in an Asian-Indian family. Hemoglobin 2: 531-540, 1978. [PubMed: 750553, related citations] [Full Text]

  57. Cabannes, R., Renaud, R., Mauran, A., Pennors, H., Charlesworth, D., Price, B. G., Lehmann, H. Two fast haemoglobins in Ivory-Coast: Hb K Woolwich and a new haemoglobin Hb J Abidjan (alpha 51 gly-to-asp). Nouv. Rev. Franc. Hemat. 12: 289-300, 1972. [PubMed: 4347947, related citations]

  58. Carstairs, K. C., Raulfs, A., Kutlar, A., Chen, S. S., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hb Fort Worth or alpha(2)27(B8)glu-to-gly in a black family from Canada. Hemoglobin 9: 201-205, 1985. [PubMed: 3839776, related citations] [Full Text]

  59. Carver, M. F. H., Kutlar, A. International Hemoglobin Information Center: variant list. Hemoglobin 19: 37-149, 1995. [PubMed: 7615401, related citations]

  60. Cash, F. E., Monplaisir, N., Goossens, M., Liebhaber, S. A. Locus assignment of two alpha-globin structural mutants from the Caribbean Basin: alpha Fort de France (alpha(45-arg)) and alpha Spanish Town (alpha(27-val)). Blood 74: 833-835, 1989. [PubMed: 2752146, related citations]

  61. Charache, S., Weatherall, D. J., Clegg, J. B. Polycythemia associated with a hemoglobinopathy. J. Clin. Invest. 45: 813-822, 1966. [PubMed: 5913291, related citations] [Full Text]

  62. Chih-chuan, L., Hai-nan, T., Kuo-feng, C. Hemoglobin Handsworth (alpha 18 (A16) gly-to-arg) in a Chinese. Hemoglobin 5: 191-193, 1981. [PubMed: 7216818, related citations] [Full Text]

  63. Chui, D. H. K., Waye, J. S. Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood 91: 2213-2222, 1998. [PubMed: 9516118, related citations]

  64. Cleek, M. P., Gardiner, M. B., Reese, A. L., Harris, H. F., Felice, A. E., Huisman, T. H. J. The Atlanta family with hemoglobin Grady revisited. (Letter) Am. J. Hum. Genet. 35: 1314-1316, 1983. [PubMed: 6650506, related citations]

  65. Clegg, J. B., Charache, S. The structure of hemoglobin Hopkins-2. Hemoglobin 2: 85-88, 1978. [PubMed: 646867, related citations] [Full Text]

  66. Clegg, J. B., Naughton, M. A., Weatherall, D. J. Abnormal human haemoglobins: separation and characterization of the alpha and beta chains by chromatography, and the determination of two new variants, Hb Chesapeake and Hb J (Bangkok). J. Molec. Biol. 19: 91-108, 1966. [PubMed: 5967288, related citations] [Full Text]

  67. Clegg, J. B., Weatherall, D. J., Boon, W. H., Mustafa, D. Two new haemoglobin variants involving proline substitutions. Nature 222: 379-380, 1969. [PubMed: 5782115, related citations] [Full Text]

  68. Cohen-Solal, M., Manesse, B., Thillet, J., Rosa, J. Haemoglobin G Norfolk alpha-85 (F6) asp-to-asn: structural characterization by sequenator analysis and functional properties of a new variant with high oxygen affinity. FEBS Lett. 50: 163-167, 1975. [PubMed: 234399, related citations] [Full Text]

  69. Colombo, B., Vidal, H., Kamuzora, H., Lehmann, H. A new haemoglobin J-Habana--alpha 71 (E20) alanine-to-glutamic acid. Biochim. Biophys. Acta 351: 1-6, 1974. [PubMed: 4834679, related citations] [Full Text]

  70. Como, P. F., Barber, S., Sage, R. E., Kronenberg, H. Hemoglobin Woodville: alpha6 (A4) aspartic acid-to-tyrosine. Hemoglobin 10: 135-141, 1986. [PubMed: 3754246, related citations] [Full Text]

  71. Cooper, M. R., Kraus, A. P., Felts, J. H., Myers, R., Kraus, L. M. A third case of hemoglobin Memphis: sickle cell disease. Am. J. Med. 55: 535-541, 1973. [PubMed: 4743350, related citations] [Full Text]

  72. Costa, F. F., Sonati, M. F., Zago, M. A. Hemoglobin Stanleyville II (alpha-78 asn-to-lys) is associated with a 3.7-kb alpha-globin gene deletion. Hum. Genet. 86: 319-320, 1991. [PubMed: 1671772, related citations] [Full Text]

  73. Cotton, F., Hansen, V., Lin, C., Parma, J., Cochaux, P., Damis, E., Vertongen, F., Gulbis, B. Hb Ube-2 [alpha-68(E17)asn-asp] and Hb Hafnia [beta-116(G18)his-gln] observed during neonatal screening in Brussels. Hemoglobin 24: 65-69, 2000. [PubMed: 10722118, related citations] [Full Text]

  74. Crookston, J. H., Beale, D., Irvine, D., Lehmann, H. A new haemoglobin, J Toronto (alpha-5 alanine to aspartic acid). Nature 208: 1059-1060, 1965. [PubMed: 5870555, related citations] [Full Text]

  75. Crookston, J. H., Farquharson, H. A., Beale, D., Lehmann, H. Hemoglobin Etobicoke: alpha 84(F5) serine replaced by arginine. Canad. J. Biochem. 47: 143-146, 1969. [PubMed: 5774804, related citations] [Full Text]

  76. Curuk, M. A., Altay, C., Fei, Y.-J., Kutlar, F., Baysal, E., Gu, L.-H., Huisman, T. H. J. Severe Hb H disease due to a combination of the -(alpha)20 kb deletion and Hb Adana, an unstable alpha-1 variant with gly-to-asp at alpha-59 (GGC-to-GAC). (Abstract) Blood 80: 81a, 1992.

  77. Dahmane-Arbane, M., Blouquit, Y., Arous, N., Bardakdjian, J., Benamani, M., Riou, J., Benabadji, M., Rosa, J., Galacteros, F. Hemoglobine Boumerdes alpha-37 (C2) pro-to-arg: un nouveau variant de la chaine alpha associe a l'hemoglobine S dans une famille algerienne. Nouv. Rev. Franc. Hemat. 29: 317-320, 1987. [PubMed: 3438164, related citations]

  78. Darbellay, R., Mach-Pascual, S., Rose, K., Graf, J., Beris, Ph. Haemoglobin Tunis-Bizerte: a new alpha-1 globin 129 leu-to-pro unstable variant with thalassaemic phenotype. Brit. J. Haemat. 90: 71-76, 1995. [PubMed: 7786798, related citations] [Full Text]

  79. Daud, D., Harahap, A., Setianingsih, I., Nainggolan, I., Tranggana, S., Pakasi, R., Marzuki, S. The hemoglobin O mutation in Indonesia: distribution and phenotypic expression. J. Hum. Genet. 46: 499-505, 2001. [PubMed: 11558897, related citations] [Full Text]

  80. Davis, J. R., Jr., Dozy, A. M., Lubin, B., Koenig, H. M., Pierce, H. I., Stamatoyannopoulos, G., Kan, Y. W. Alpha-thalassemia in blacks is due to gene deletion. Am. J. Hum. Genet. 31: 569-573, 1979. [PubMed: 507051, related citations]

  81. De Gobbi, M., Viprakasit, V., Hughes, J. R., Fisher, C., Buckle, V. J., Ayyub, H., Gibbons, R. J., Vernimmen, D., Yoshinaga, Y., de Jong, P., Cheng, J.-F., Rubin, E. M., Wood, W. G., Bowden, D., Higgs, D. R. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312: 1215-1217, 2006. [PubMed: 16728641, related citations] [Full Text]

  82. de Traverse, P. M., Lehmann, H., Coquelet, M. L., Beale, D., Isaacs, W. A. Etude d'une hemoglobine J-alpha non encore decrite, dans une famille francaise. C. R. Seances Soc. Biol. Fil. 160: 2270-2272, 1966. [PubMed: 4228361, related citations]

  83. de Weinstein, B. I., Kutlar, A., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hemoglobin Daneshgah-Tehran or alpha72(EF1)his-to-arg in an Argentinean family. Hemoglobin 9: 409-411, 1985. [PubMed: 3841101, related citations] [Full Text]

  84. Deisseroth, A., Hendrick, D. Human alpha-globin gene expression following chromosomal dependent gene transfer into mouse erythroleukemia cells. Cell 15: 55-63, 1978. [PubMed: 279411, related citations] [Full Text]

  85. Deisseroth, A., Nienhuis, A., Turner, P., Velez, R., Anderson, W. F., Ruddle, F. H., Lawrence, J., Creagan, R. P., Kucherlapati, R. S. Localization of the human alpha globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell 12: 205-218, 1977. [PubMed: 561664, related citations] [Full Text]

  86. Deisseroth, A., Velez, R., Nienhuis, A. W. Hemoglobin synthesis in somatic cell hybrids: independent segregation of the human alpha- and beta-globin genes. Science 191: 1262-1263, 1976. [PubMed: 943846, related citations] [Full Text]

  87. Deon, C., Prome, J. C., Prome, D., Francina, A., Groff, P., Kalmes, G., Galacteros, F., Wajcman, H. Combined mass spectrometric methods for the characterization of human hemoglobin variants localized within alpha-T9 peptide: identification of Hb Villeurbanne alpha-89 (FG1) his-to-tyr. J. Mass Spectrom. 32: 880-887, 1997. [PubMed: 9269086, related citations] [Full Text]

  88. DeVries, A., Joshua, H., Lehmann, H., Hill, R. L., Fellows, R. E. The first observation of an abnormal hemoglobin in a Jewish family: hemoglobin Beilinson. Brit. J. Haemat. 9: 484-486, 1963. [PubMed: 14076130, related citations] [Full Text]

  89. Dincol, G., Dincol, K., Erdem, S., Pobedimskaya, D. D., Molchanova, T. P., Ye, Z., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hb Capa or alpha-94(G1)asp-to-gly, a mildly unstable variant with an A-to-G (GAC-to-GGC) mutation in codon 94 of the alpha-1-globin gene. Hemoglobin 18: 57-60, 1994. [PubMed: 8195009, related citations] [Full Text]

  90. Dincol, G., Elam, D., Kutlar, A., Kutlar, F. Hb Setif [alpha-94(G1)asp-to-tyr (alpha-2)] detected in a Turkish family. Hemoglobin 27: 249-252, 2003. [PubMed: 14649316, related citations] [Full Text]

  91. Djoumessi, S., Rousseaux, J., Descamps, J., Goudemand, M., Dautrevaux, M. Hemoglobin Lille, alpha-2(74(EF3) asp-to-ala)beta-2. Hemoglobin 5: 475-479, 1981. [PubMed: 7275663, related citations]

  92. Dozy, A. M., Forman, E. N., Abuelo, D. N., Barsel-Bowers, G., Mahoney, M. J., Forget, B. G., Kan, Y. W. Prenatal diagnosis of hemizygous alpha-thalassemia. JAMA 241: 1610-1613, 1979. [PubMed: 430715, related citations]

  93. Dozy, A. M., Kan, Y. W., Embury, S. H., Mentzer, W. C., Wang, W. C. Alpha-globin gene organisation in blacks precludes the severe form of alpha-thalassaemia. Nature 280: 605-607, 1979. [PubMed: 460443, related citations] [Full Text]

  94. Eicher, E. M., Lee, B. K. Growth hormone receptor (Ghr) and hemoglobin alpha-chain pseudogene 3 (Hba-ps3) map proximal to the myelocytomatosis oncogene (Myc) on mouse chromosome 15. Mammalian Genome 1: 57-58, 1991. [PubMed: 1794046, related citations] [Full Text]

  95. Embury, S. H., Lebo, R. V., Dozy, A. M., Kan, Y. W. Organization of the alpha-globin genes in the Chinese alpha-thalassemia syndromes. J. Clin. Invest. 63: 1307-1310, 1979. [PubMed: 447845, related citations] [Full Text]

  96. Eng, B., Patterson, M., Walker, L., Hoppe, C., Azimi, M., Lee, H., Giordano, P. C., Waye, J. S. Three new alpha-thalassemia point mutations ascertained through newborn screening. Hemoglobin 30: 149-153, 2006. [PubMed: 16798638, related citations] [Full Text]

  97. Felice, A. E. Hb St. Luke's (alpha-95(G2)pro-to-arg (alpha-1)). (Letter) Hemoglobin 27: 137 only, 2003. [PubMed: 12779278, related citations] [Full Text]

  98. Ferranti, P., Parlapiano, A., Malorni, A., Pucci, P., Marino, G., Cossu, G., Manca, L., Masala, B. Hemoglobin Ozieri: a new alpha-chain variant (alpha-71(E20)ala-to-val): characterization using FAB- and electrospray-mass spectrometric techniques. Biochim. Biophys. Acta 1162: 203-208, 1993. [PubMed: 8448185, related citations] [Full Text]

  99. Fessas, C., Karaklis, A., Loukopoulos, D., Stamatoyannopoulos, G., Fessas, P. Hemoglobin Nicosia: an alpha-chain variant and its combination with beta-thalassaemia. Brit. J. Haemat. 11: 323-330, 1965. [PubMed: 14282069, related citations] [Full Text]

  100. Fessas, P., Kaltsoya, A., Loukopoulos, D., Nilsson, L.-O. On the chemical structure of haemoglobin Uppsala. Hum. Hered. 19: 152-158, 1969. [PubMed: 5798597, related citations] [Full Text]

  101. Fleming, P. J., Arnold, B. J., Thompson, E. O. P., Hughes, W. G., Morgan, L. Hb I alpha 16 lys-to-glu and Hb Broussais alpha 90 lys-to-asn in Australian families. Pathology 10: 317-327, 1978. [PubMed: 740406, related citations] [Full Text]

  102. Fleming, P. J., Hughes, W. G., Farmilo, R. K., Wyatt, K., Cooper, W. N. Hemoglobin Westmead (alpha 122(H5) his-to-gln): a new hemoglobin variant with the substitution in the alpha-beta contact area. Hemoglobin 4: 39-52, 1980. [PubMed: 6153381, related citations] [Full Text]

  103. Fleming, P. J., Sumner, D. R., Wyatt, K., Hughes, W. G., Melrose, W. D., Jupe, D. M. D., Baikie, M. J. Hemoglobin Hobart or alpha20 (B1) his-to-arg: a new alpha chain hemoglobin variant. Hemoglobin 11: 211-220, 1987. [PubMed: 3654264, related citations] [Full Text]

  104. Flint, J., Hill, A. V. S., Bowden, D. K., Oppenheimer, S. J., Sill, P. R., Serjeantson, S. W., Bonna-Kori, J., Bhatia, K., Alpers, M. P., Boyce, A. J., Weatherall, D. J., Clegg, J. B. High frequencies of alpha-thalassemia are the result of natural selection by malaria. Nature 321: 744-751, 1986. [PubMed: 3713863, related citations] [Full Text]

  105. Fujisawa, K., Hattori, Y., Ohba, Y., Ando, S. Hb Yuda or alpha130 (H13) ala-to-asp; a new alpha chain variant with low oxygen affinity. Hemoglobin 16: 435-439, 1992. [PubMed: 1428950, related citations] [Full Text]

  106. Fujiwara, N., Maekawa, T., Matsuda, G. Hemoglobin Atago (alpha 85 tyr): a new abnormal human hemoglobin found in Nagasaki. Int. J. Protein Res. 3: 35-39, 1971. [PubMed: 5115619, related citations]

  107. Fujiwara, N. An amino acid substitution in Hb Atago, an abnormal human hemoglobin. J. Jpn. Biochem. Soc. 42: 341-349, 1970.

  108. Fung, T. Y., Kin, L. T., Kong, L. C., Keung, L. C. Homozygous alpha-thalassemia associated with hypospadias in three survivors. Am. J. Med. Genet. 82: 225-227, 1999. [PubMed: 10215545, related citations]

  109. Gajdusek, D. C., Guiart, J., Kirk, R. L., Carrell, R. W., Irvine, D., Kynoch, P. A. M., Lehmann, H. Haemoglobin J Tongariki (alpha 115 alanine to aspartic acid): the first new haemoglobin variant found in a Pacific (Melanesian) population. J. Med. Genet. 4: 1-6, 1967. [PubMed: 6034517, related citations] [Full Text]

  110. Gammack, D. B., Huehns, E. R., Lehmann, H., Shooter, E. M. The abnormal polypeptide chains in a number of haemoglobin variants. Acta Genet. Statist. Med. 11: 1-16, 1961. [PubMed: 13703277, related citations] [Full Text]

  111. Gandini, E., Dallapiccola, B., Laurent, C., Suerine, E. F., Forabosco, A., Conconi, G., Del Senno, L. Evidence for localisation of genes for human alpha-globin on the long arm of chromosome 4. Nature 265: 65-66, 1977. [PubMed: 834243, related citations] [Full Text]

  112. Garel, M. C., Goossens, M., Oudart, J. L., Blouquit, Y., Thillet, J., Rosa, J. Hemoglobin Dakar = Hb Grady: demonstration by a new approach to the analysis of the tryptic core region of the alpha chain and oxygen equilibrium properties. Biochim. Biophys. Acta 453: 459-471, 1976. [PubMed: 999899, related citations] [Full Text]

  113. Gerald, P. S., Cook, C. D., Diamond, L. K. Hemoglobin M. Science 126: 300-301, 1957. [PubMed: 13454817, related citations] [Full Text]

  114. Gerald, P. S., Efron, M. L. Chemical studies of several varieties of Hb M. Proc. Nat. Acad. Sci. 47: 1758-1767, 1961. [PubMed: 13897827, related citations] [Full Text]

  115. Gerhard, D. S., Kawasaki, E. S., Bancroft, F. C., Szabo, P. Localization of a unique gene by direct hybridization in situ. Proc. Nat. Acad. Sci. 78: 3755-3759, 1981. [PubMed: 6943581, related citations] [Full Text]

  116. Giordano, P. C., Fodde, R., Amons, R., Ploem, J. E., Bernini, L. F. Hb J-Anatolia (alpha61(E10)lys-to-thr): structural characterization and gene localization of a new alpha chain variant. Hemoglobin 14: 119-128, 1990. [PubMed: 2272835, related citations] [Full Text]

  117. Giordano, P. C., Harteveld, C. L., Kok, P. J. M. J., Geenen, A., Batelaan, D., Amons, R., Bernini, L. F. Hb Gouda (alpha72(EF1)his-to-gln), a new silent alpha-chain variant. Hemoglobin 20: 21-29, 1996. [PubMed: 8745429, related citations] [Full Text]

  118. Girodon, E., M'Rad, A., Martin, J., Goossens, M., Galacteros, F., Rosa, J., Gisselbrecht, C., Boiron, M., Cohen, I. J., Jaber, L., Tamari, H., Goshen, J., Zaizov, R., Wajcman, H. Hb Taybe (alpha 38 or 39 THR deleted): a new unstable alpha chain hemoglobin variant. (Abstract) Blood 80 (suppl. 1): 388a, 1992.

  119. Gonzalez Redondo, J. M., Wilson, J. B., Kutlar, A., Huisman, T. H. J., Sicilia, A., Romero, C., Fernandes Fuertes, I. Hb J-Pontoise or alpha63(E12)ala-to-asp in four members of a Spanish family. Hemoglobin 11: 47-50, 1987. [PubMed: 3583765, related citations] [Full Text]

  120. Goossens, M., Dozy, A. M., Embury, S. H., Zachariadis, Z., Hadjiminas, M. G., Stamatoyannopoulos, G., Kan, Y. W. Triplicated alpha-globin loci in humans. Proc. Nat. Acad. Sci. 77: 518-521, 1980. [PubMed: 6928643, related citations] [Full Text]

  121. Gottlieb, A. J., Restrepo, A., Itano, H. A. Hb J (Medellin). Chemical and genetic study. Fed. Proc. 23: 172, 1964.

  122. Griffiths, K. D., Lang, A., Lehmann, H., Mann, J. R., Plowman, D., Raine, D. N. Haemoglobin Handsworth alpha 18 glycine-to-arginine. FEBS Lett. 75: 93-95, 1977. [PubMed: 852596, related citations] [Full Text]

  123. Groff, P., Galacteros, F., Kalmes, G., Blouquit, Y., Wajcman, H. HB Luxembourg (alpha24(B5)tyr-to-his): a new unstable variant. Hemoglobin 13: 429-436, 1989. [PubMed: 2599879, related citations] [Full Text]

  124. Guis, M., Mentzer, W. C., Jue, D. L., Johnson, M. H., McGuffey, J. E., Moo-Penn, W. F. Hemoglobin Twin Peaks: alpha113(GH1) leu-to-his. Hemoglobin 9: 175-177, 1985. [PubMed: 3839772, related citations] [Full Text]

  125. Hamaguchi, K., Harano, K., Harano, T., Sakata, T. Hb Oita (alpha-45(CE3)his-to-pro): a new silent hemoglobin variant. Hemoglobin 22: 347-354, 1998. Note: Erratum: Hemoglobin 22: 539-540, 1998. [PubMed: 9730365, related citations] [Full Text]

  126. Hanada, M., Ohta, Y., Imamura, T., Fejimura, T., Kawasaki, K., Kosaka, K., Yamaoka, K., Seita, M. Studies of abnormal hemoglobins in western Japan. (Abstract) Jpn. J. Hum. Genet. 9: 253-254, 1964.

  127. Hanada, M., Rucknagel, D. L. The characterization of hemoglobin Shimonoseki. Blood 24: 624-635, 1964. [PubMed: 14236737, related citations]

  128. Hansen, H. A., Jagenburg, O. R., Johansson, B. G. Studies on an abnormal hemoglobin causing hereditary congenital cyanosis. Acta Paediatr. (Stockh.) 49: 503-511, 1960. [PubMed: 14399582, related citations] [Full Text]

  129. Harano, K., Harano, T., Shibata, S., Mori, H., Ueda, S., Imai, K., Ohba, Y., Irimajiri, K. Hb J Oxford (alpha15 (A13) gly-to-asp) in Japan. Hemoglobin 8: 197-198, 1984. [PubMed: 6469697, related citations] [Full Text]

  130. Harano, T., Harano, K., Hong, Y.-F., Than, A. M., Suetsugu, Y., Ohba, K. The mutation of Hb Turriff (alpha-99(G6)lys-to-glu (AAG-GAG)) is carried by the alpha-1-globin gene in a Japanese (Hb Turriff-I). Hemoglobin 27: 123-127, 2003. [PubMed: 12779275, related citations] [Full Text]

  131. Harano, T., Harano, K., Imai, K., Terunuma, S. Hb Swan River (alpha6(A4)asp-to-gly) observed in a Japanese man. Hemoglobin 20: 75-78, 1996. [PubMed: 8745434, related citations] [Full Text]

  132. Harano, T., Harano, K., Imai, N., Ueda, S., Seki, M. An electrophoretically silent hemoglobin variant, Hb Hekinan (alpha27 (B8) glu-to-asp) found in a Japanese. Hemoglobin 12: 61-65, 1988. [PubMed: 3384699, related citations] [Full Text]

  133. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Seki, M. Hb Handa (alpha90 (FG2) lys-to-met): structure and biosynthesis of a new slightly higher oxygen affinity variant. Hemoglobin 6: 379-389, 1982. [PubMed: 6815131, related citations] [Full Text]

  134. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Seki, M. Hemoglobin Tokoname (alpha139 (HC 1) lys-to-thr): a new hemoglobin variant with a slightly increased oxygen affinity. Hemoglobin 7: 85-90, 1983. [PubMed: 6188720, related citations] [Full Text]

  135. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Tsuneshige, A., Uchida, E., Horiuchi, K. Hb Le Lamentin (alpha20 (B1) his-to-gln) in Japan: structure, function and biosynthesis. Hemoglobin 7: 181-184, 1983. [PubMed: 6671903, related citations] [Full Text]

  136. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Tsuneshige, A., Yamada, H., Seki, M., Fukui, H. Hemoglobin Kariya (alpha40 (C5) lys-to-glu) a new hemoglobin variant with an increased oxygen affinity. FEBS Lett. 153: 332-334, 1983. [PubMed: 6137414, related citations] [Full Text]

  137. Harano, T., Harano, K., Shibata, S., Ueda, S., Mori, H., Imai, K. Hb Chesapeake (alpha92 (FG4) arg-to-leu) and Hb J Cape Town (alpha92 (FG4) arg-to-gln) first discovered in Japanese. Hemoglobin 7: 461-465, 1983. [PubMed: 6629827, related citations] [Full Text]

  138. Harano, T., Harano, K., Shibata, S., Ueda, S., Mori, H., Seki, M. Hemoglobin Aichi (alpha50 (CE8) his-to-arg): a new slightly unstable hemoglobin variant discovered in Japan. FEBS Lett. 169: 297-299, 1984. [PubMed: 6714429, related citations] [Full Text]

  139. Harano, T., Harano, K., Ueda, S., Shibata, S., Imai, K., Ohba, Y., Shinohara, T., Horio, S., Nishioka, K., Shirotani, H. Hemoglobin Kawachi (alpha 44 (CE2) pro-to-arg): a new hemoglobin variant of high oxygen affinity with amino acid substitution at alpha(1)-beta(2) contact. Hemoglobin 6: 43-49, 1982. [PubMed: 7068434, related citations] [Full Text]

  140. Harano, T., Harano, K., Ueda, S. Hb Owari (alpha121 (H4) val-to-met): a new hemoglobin variant with a neutral-to-neutral amino acid substitution detected by isoelectric focusing. Hemoglobin 10: 127-134, 1986. [PubMed: 3754245, related citations] [Full Text]

  141. Harano, T., Harano, K., Uehara, S., Matsushita, K. Two new alpha chain variants: Hb Fuchu-I (alpha-72(EF1)his-to-tyr) and Hb Fuchu-II (alpha-97(G4)asn-to-his). Hemoglobin 19: 389-395, 1995. [PubMed: 8718697, related citations] [Full Text]

  142. Hardison, R. C., Sawada, I., Cheng, J.-F., Shen, C.-K. J., Schmid, C. W. A previously undetected pseudogene in the human alpha globin gene cluster. Nucleic Acids Res. 14: 1903-1911, 1986. [PubMed: 3952001, related citations] [Full Text]

  143. Harteveld, C. L., Rozendaal, L., Blom, N. A., Lo-A-Njoe, S., Akkerman, N., Arkestijn, S., Van Delft, P., Giordano, P. C. Hb Oegstgeest (alpha-104(G11)cys-to-ser(alpha-1)): a new hemoglobin variant associated with a mild alpha-thalassemia phenotype. Hemoglobin 29: 165-169, 2005. [PubMed: 16114179, related citations] [Full Text]

  144. Harteveld, C. L., Van Delft, P., Akkermans, N., Arkesteijn, S., Van Rooijen-Nijdam, I. H., Kok, P. J. M. J., Versteegh, F. G. A., Giordano, P. C. Hb Buffalo [alpha-89(FG1)his-to-gln (alpha-1)], observed solely and in the presence of an Hb S [beta-6(A3)glu-to-val] heterozygosity. Hemoglobin 28: 223-227, 2004. [PubMed: 15481890, related citations] [Full Text]

  145. Harteveld, C. L., Van Delft, P., Plug, R. J., Erjavec, Z., Wajcman, H., Giordano, P. C. Hb Delfzicht [alpha-9(A7)asn-to-lys (alpha-1)]: a new, clinically silent hemoglobin variant observed in a Dutch patient. Hemoglobin 26: 181-184, 2002. [PubMed: 12144062, related citations] [Full Text]

  146. Harteveld, C. L., Wijermans, P. W., de Ree, J. E. L. M., Ter Hal, P., Van Delft, P., Van Rooijen-Nijdam, I. H., Rasp, E., Kok, P. J. M. J., Souverijn, J. H. M., Versteegh, F. G. A., Giordano, P. C. A new Hb Evanston allele (alpha-14(A12)trp-to-arg) found solely, and in the presence of common alpha-thalassemia deletions, in three independent Asian cases. Hemoglobin 28: 1-5, 2004. [PubMed: 15008259, related citations] [Full Text]

  147. Hatton, C. S. R., Wilkie, A. O. M., Drysdale, H. C., Wood, W. G., Vickers, M. A., Sharpe, J., Ayyub, H., Pretorius, I. M., Buckle, V. J., Higgs, D. R. Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha-globin gene cluster. Blood 76: 221-227, 1990. [PubMed: 2364173, related citations]

  148. Hattori, Y., Ohba, Y., Suda, T., Miura, Y., Yoshinaka, H., Miyaji, T. Hemoglobin Guizhou in Japan. Hemoglobin 9: 187-192, 1985. [PubMed: 3839774, related citations] [Full Text]

  149. Hayashi, A., Yamamura, Y., Ogita, S., Kikkawa, H. Hemoglobin M (Osaka), a new variant of hemoglobin M. Jpn. J. Hum. Genet. 9: 87-94, 1964. [PubMed: 5893086, related citations]

  150. Headlee, M. G., Nakatsuji, T., Lam, H., Wrightstone, R. N., Huisman, T. H. J. Hb Etobicoke, alpha85(F5) ser-to-arg found in a newborn of French-Indian-English descent. Hemoglobin 7: 285-287, 1983. [PubMed: 6874377, related citations] [Full Text]

  151. Heller, P., Weinstein, H. G., Yakulis, V. J., Rosenthal, I. M. Hemoglobin M (Kankakee), a new variant of hemoglobin M. Blood 20: 287-301, 1962. [PubMed: 13906251, related citations]

  152. Heller, P. Hemoglobin M (Chicago) and M (Kankakee). In: Lehmann, H.; Betke, K. (eds.): Haemoglobin-Colloquium. Stuttgart: Georg Thieme Verlag (pub.) 1962. Pp. 47-49.

  153. Hess, J. F., Fox, M., Schmid, C., Shen, C.-K. J. Molecular evolution of the human adult alpha-globin-like gene region: insertion and deletion of Alu family repeats and non-Alu DNA sequences. Proc. Nat. Acad. Sci. 80: 5970-5974, 1983. [PubMed: 6310609, related citations] [Full Text]

  154. Hidaka, K., Iuchi, I., Kobayashi, T., Katoh, K., Yaguchi, K. Hb Fukutomi (alpha126(H9)asp-to-val): a new hemoglobin variant with high oxygen affinity. Hemoglobin 14: 499-509, 1990. [PubMed: 2079432, related citations] [Full Text]

  155. Higgs, D. R., Goodbourn, S. E. Y., Wainscoat, J. S., Clegg, J. B., Weatherall, D. J. Highly variable regions of DNA flank the human alpha-globin genes. Nucleic Acids Res. 9: 4213-4224, 1981. [PubMed: 6272199, related citations] [Full Text]

  156. Higgs, D. R., Hunt, D. M., Drysdale, H. C., Clegg, J. B., Pressley, L., Weatherall, D. J. The genetic basis of Hb Q-H disease. Brit. J. Haemat. 46: 387-400, 1980. [PubMed: 7448125, related citations] [Full Text]

  157. Higgs, D. R., Vickers, M. A., Wilkie, A. O. M., Pretorius, I.-M., Jarman, A. P., Weatherall, D. J. A review of the molecular genetics of the alpha-globin gene cluster. Blood 73: 1081-1104, 1989. [PubMed: 2649166, related citations]

  158. Higgs, D. R., Wainscoat, J. S., Flint, J., Hill, A. V. S., Thein, S. L., Nicholls, R. D., Teal, H., Ayyub, H., Peto, T. E. A., Falusi, A. G., Jarman, A. P., Clegg, J. B., Weatherall, D. J. Analysis of the human alpha-globin gene cluster reveals a highly informative genetic locus. Proc. Nat. Acad. Sci. 83: 5165-5169, 1986. [PubMed: 3014536, related citations] [Full Text]

  159. Hill, A. V. S., Bowden, D. K., Trent, R. J., Higgs, D. R., Oppenheimer, S. J., Thein, S. L., Mickleson, K. N. P., Weatherall, D. J., Clegg, J. B. Melanesians and Polynesians share a unique alpha-thalassemia mutation. Am. J. Hum. Genet. 37: 571-580, 1985. [PubMed: 2988335, related citations]

  160. Hill, A. V. S., Thein, S. L., Mavo, B., Weatherall, D. J., Clegg, J. B. Non-deletion haemoglobin H disease in Papua New Guinea. J. Med. Genet. 24: 767-771, 1987. [PubMed: 2892939, related citations] [Full Text]

  161. Hollan, S. R., Szelenyi, J. G., Brimhall, B., Duerst, M., Jones, R. T., Koler, R. D., Stocklen, Z. Multiple alpha chain loci for human haemoglobins: Hb J (Buda) and Hb G (Pest). Nature 235: 47-50, 1972.

  162. Hollan, S. R., Szelenyi, J. G., Lehmann, H., Beale, D. A Boston-type haemoglobin M in Hungary: haemoglobin M Kiskunhalas. Haematologica 1: 11-18, 1967.

  163. Honig, G. R., Shamsuddin, M., Tremaine, L. M., Mason, R. G., Vida, L. N., Sarnwick, R., Shahidi, N. T. Hemoglobin Nigeria (alpha81 ser-to-cys), a new variant having an inhibitory effect on the gelation of sickle hemoglobin. (Abstract) Blood 52 (suppl. 1): 113, 1978.

  164. Honig, G. R., Shamsuddin, M., Vida, L. N., Mompoint, M., Bowie, L., Jones, E., Weil, S. Hb Evanston (alpha 14 trp-to-arg): a new variant with thalassemia-like hematologic expression. (Abstract) Blood 60: 53a, 1982.

  165. Honig, G. R., Shamsuddin, M., Zaizov, R., Steinherz, M., Solar, I., Kirschmann, C. Hemoglobin Petah Tikva (alpha 110 ala-to-asp): a new unstable variant with alpha-thalassemia-like expression. Blood 57: 705-711, 1981. [PubMed: 7470621, related citations]

  166. Honig, G. R., Vida, L. N., Shamsuddin, M., Mason, R. G., Schlumpf, H. W., Luke, R. A. Hemoglobin Milledgeville (alpha44 (CD2) pro-to-leu): a new variant with increased oxygen affinity. Biochim. Biophys. Acta 626: 424-431, 1980. [PubMed: 7213661, related citations] [Full Text]

  167. Horst, J., Assum, G., Griese, E. U., Eigel, A., Hampl, W., Kohne, E. Hemoglobin M Iwate is caused by a C-to-T transition in codon 87 of the human alpha-1-globin gene. Hum. Genet. 75: 53-55, 1987. [PubMed: 3026948, related citations] [Full Text]

  168. Houjun, L., Dexiang, L., Zhiguo, L., Ping, L., Ly, L., Ji, C., Shaozhi, H. A new fast-moving hemoglobin variant, Hb J-Tashikuergan alpha19 (AB1) ala-to-glu. Hemoglobin 8: 391-395, 1984.

  169. Hoyer, J. D., McCormick, D. J., Snow, K., Lawler, J., Jadick, M., Grageda, R., Early, J. L., Ball, C., Skarda, P., Kubik, K. S., Holmes, M. W., Fairbanks, V. F. Three new variants of the alpha-1-globin gene without clinical or hematologic effects: Hb Hagerstown [alpha-44(CE2)pro-to-ala (alpha-1)]; Hb Buffalo [alpha-89(FG1)his-to-gln (alpha-1)], a hemoglobin variant from Somalia and Yemen; Hb Wichita [alpha-95(G2)pro-to-gln (alpha-1)]; and a second, unrelated, case of Hb Roubaix [alpha-55(E4)val-to-leu (alpha-1)]. Hemoglobin 26: 291-298, 2002. [PubMed: 12403494, related citations] [Full Text]

  170. Hoyer, J. D., Weinhold, J., Mailhot, E., Alter, D., McCormick, D. J., Snow, K., Kubik, K. S., Holmes, M. W., Fairbanks, V. F. Three new hemoglobin variants with abnormal oxygen affinity: Hb Saratoga Springs [alpha-40(C5)lys-to-asn (alpha-1)], Hb Santa Clara [beta-97(FG4)his-to-asn], and Hb Sparta [beta-103(G5)phe-to-val]. Hemoglobin 27: 235-241, 2003. [PubMed: 14649314, related citations] [Full Text]

  171. Huisman, T. H. J., Adams, H. R., Wilson, J. B., Efremov, G. D., Reynolds, C. A., Wrightstone, R. N. Hemoglobin G Georgia or alpha 95 leu (G-2) beta 2. Biochim. Biophys. Acta 200: 578-580, 1970. [PubMed: 5436649, related citations] [Full Text]

  172. Huisman, T. H. J., Carver, M. F. H., Efremov, G. D. A syllabus of human hemoglobin variants (1996). Augusta, Ga.: The Sickle Cell Anemia Foundation (pub.) 1996.

  173. Huisman, T. H. J., Miller, A. Hb Grady and alpha-thalassemia: a contribution to the problem of the number of Hb (alpha) structural loci in man. Am. J. Hum. Genet. 28: 363-369, 1976. [PubMed: 941904, related citations]

  174. Huisman, T. H. J., Sydenstricker, V. P. Difference in gross structure of two electrophoretically identical 'minor' hemoglobin components. Nature 193: 489-491, 1962. [PubMed: 14449876, related citations] [Full Text]

  175. Huisman, T. H. J., Wilson, J. B., Gravely, M., Hubbard, M. Hemoglobin Grady: the first example of a variant with elongated chains due to an insertion of residues. Proc. Nat. Acad. Sci. 71: 3270-3273, 1974. [PubMed: 4528583, related citations] [Full Text]

  176. Huntsman, R. G., Hall, M., Lehmann, H., Sukumaran, P. K. A second and a third abnormal haemoglobin in Norfolk. Hb G-Norfolk and Hb D-Norfolk. Brit. Med. J. 1: 720-722, 1963. [PubMed: 13955802, related citations] [Full Text]

  177. Hyde, R. D., Kinderlerer, J. L., Lehmann, H., Hall, M. Hb J Rajappen. Biochim. Biophys. Acta 243: 515-519, 1971. [PubMed: 5129592, related citations]

  178. Imai, K., Tsuneshige, A., Harano, T., Harano, K. Structure-function relationships in hemoglobin Kariya, lys40(C5)alpha-to-glu, with high oxygen affinity: functional role of the salt bridge between lys40alpha and the beta-chain COOH terminus. J. Biol. Chem. 264: 11174-11180, 1989. [PubMed: 2500435, related citations]

  179. Imamura, T. Hemoglobin Kagoshima: an example of hemoglobin Norfolk in a Japanese family. Am. J. Hum. Genet. 18: 584-593, 1966. [PubMed: 5927878, related citations]

  180. Itano, H. A., Robinson, E. A. Formation of normal and double abnormal haemoglobins by recombination of haemoglobin I with S and C. Nature 183: 1799-1800, 1959. [PubMed: 14405987, related citations] [Full Text]

  181. Itano, H. A., Robinson, E. A. Genetic control of the alpha- and beta-chains of hemoglobin. Proc. Nat. Acad. Sci. 46: 1492-1501, 1960. [PubMed: 16590776, related citations] [Full Text]

  182. Iuchi, I., Hidaka, K., Ueda, S., Shibata, S., Kusumoto, T. Hemoglobin G Taichung (alpha 74 asp-to-his) heterozygotes found in two Japanese families. Hemoglobin 2: 79-84, 1978. [PubMed: 640847, related citations] [Full Text]

  183. Iuchi, I., Shimasaki, S., Hidaka, K., Harano, T., Ueda, S., Shibata, S., Mizushima, J., Kubo, N. Hemoglobin Mizushi (alpha75 EF4 asp-to-gly): a new hemoglobin variant observed in a Japanese family. Hemoglobin 4: 209-214, 1980. [PubMed: 7390865, related citations]

  184. Jarman, A. P., Higgs, D. R. A new hypervariable marker for the human alpha-globin gene cluster. Am. J. Hum. Genet. 43: 249-256, 1988. [PubMed: 2901223, related citations]

  185. Jen, P. C., Liu, Y. Hemoglobin Guangzhou, alpha64 (E3) asp-to-gly, a new abnormal hemoglobin found in Guangzhou, China. Hemoglobin 11: 25-30, 1987. [PubMed: 3454663, related citations] [Full Text]

  186. Jones, R. T., Brimhall, B., Lisker, R. Chemical characterization of hemoglobin Mexico and hemoglobin Chiapas. Biochim. Biophys. Acta 154: 488-495, 1968. [PubMed: 5650416, related citations] [Full Text]

  187. Jones, R. T., Koler, R. D., Lisker, R. The chemical structure of hemoglobin Mexico determined by automatic peptide chromatography and subunit hybridization. Clin. Res. 11: 105, 1963.

  188. Jue, D. L., Johnson, M. H., Patchen, L. C., Moo-Penn, W. F. Hemoglobin Dunn: alpha6 aspartic acid-to-asparagine. Hemoglobin 3: 137-143, 1979. [PubMed: 478975, related citations] [Full Text]

  189. Juricic, D., Efremov, G. D., Wilson, J. B., Huisman, T. H. J. Hb Savaria or alpha49(CE7)ser-to-arg in a Yugoslavian family. Hemoglobin 9: 631-633, 1985. [PubMed: 3937826, related citations] [Full Text]

  190. Kamuzora, H., Lehmann, H. A new hemoglobin variant. Hemoglobin J (Birmingham): alpha 120 (H3) ala-to-glu. Ann. Clin. Biochem. 11: 53-55, 1974.

  191. Kan, Y. W., Dozy, A. M., Stamatoyannopoulos, G., Hadjiminas, M. G., Zachariadis, Z., Furbetta, M., Cao, A. Molecular basis of hemoglobin-H disease in the Mediterranean population. Blood 54: 1434-1438, 1979. [PubMed: 508946, related citations]

  192. Kan, Y. W., Golbus, M. S., Dozy, A. M. Prenatal diagnosis of alpha-thalassemia: clinical application of molecular hybridization. New Eng. J. Med. 295: 1165-1167, 1976. [PubMed: 980019, related citations] [Full Text]

  193. Kazanetz, E. G., Leonova, J. Y., Wilson, J. B., McMillan, S. K., Walbrecht, M., de Pablos Gallego, J. M., Huisman, T. H. J. Hb Anamosa or alpha(2)-111(G18)ala--val-beta2 (alpha2 mutation) and Hb Mulhacen or alpha(2)-123(H6)ala--ser-beta2 (alpha1 mutation) are two silent, stable variants detected by sequencing of amplified DNA. Hemoglobin 19: 1-6, 1995. [PubMed: 7615398, related citations] [Full Text]

  194. Kendall, A. G., Barr, R. D., Lang, A., Lehmann, H. Hemoglobin J (Nyanza) alpha 21 (B2) ala-to-asp. Biochim. Biophys. Acta 310: 357-359, 1973. [PubMed: 4719146, related citations] [Full Text]

  195. Kielman, M. F., Smits, R., Devi, T. S., Fodde, R., Bernini, L. F. Homology of a 130-kb region enclosing the alpha-globin gene cluster, the alpha-locus controlling region, and two non-globin genes in human and mouse. Mammalian Genome 4: 314-323, 1993. [PubMed: 8318735, related citations] [Full Text]

  196. Kilinc, Y., Kumi, M., Gurgey, A., Altay, C., Webber, B. B., Wilson, J. B., Kutlar, A., Huisman, T. H. J. Hemoglobin O-Padova or alpha30(B11)glu-to-lys observed in members of a Turkish family. Hemoglobin 9: 621-625, 1985. [PubMed: 2869010, related citations] [Full Text]

  197. Kister, J., Kiger, L., Francina, A., Hanny, P., Szymanowicz, A., Blouquit, Y., Prome, D., Galacteros, F., Delaunay, J., Wajcman, H. Hemoglobin Roanne (alpha94(G1)asp-to-glu): a variant of the alpha-1 beta-2 interface with an unexpected high oxygen affinity. Biochim. Biophys. Acta 1246: 34-38, 1995. [PubMed: 7811728, related citations] [Full Text]

  198. Kleihauer, E. F., Reynolds, C. A., Dozy, A. M., Wilson, J. B., Moores, R. R., Berenson, M. P., Wright, C. S., Huisman, T. H. J. Hemoglobin Bibba or alpha(2)136 pro beta(2), an unstable alpha chain abnormal hemoglobin. Biochim. Biophys. Acta 154: 220-221, 1968. [PubMed: 5639009, related citations] [Full Text]

  199. Knuth, A., Pribilla, W., Marti, H. R., Winterhalter, K. H. Hemoglobin Moabit: alpha 86 (F7) leu-to-arg: a new unstable abnormal hemoglobin. Acta Haemat. 61: 121-124, 1979. [PubMed: 108887, related citations] [Full Text]

  200. Koeffler, H. P., Sparkes, R. S., Stang, H., Mohandas, T. Regional assignment of genes for human alpha-globin and phosphoglycollate phosphatase to the short arm of chromosome 16. Proc. Nat. Acad. Sci. 78: 7015-7018, 1981. [PubMed: 6273902, related citations] [Full Text]

  201. Kohne, E., Krause, M., Leupold, D., Kleihauer, E. Hemoglobin F Koelliker (alpha-2-minus 141 (HC3) arg-to-gamma-2): a modification of fetal hemoglobin. Hemoglobin 1: 257-266, 1977. [PubMed: 893128, related citations] [Full Text]

  202. Konigsberg, W., Guidotti, G., Hill, R. J. The amino acid sequence of the alpha chain of human hemoglobin. J. Biol. Chem. 236: PC55-PC56, 1961. [PubMed: 13752954, related citations]

  203. Kraus, A. P., Miyaji, T., Iuchi, I., Kraus, L. M. Hemoglobin Memphis: a new variety of sickle cell anemia with symptoms due to an alpha-chain variant hemoglobin (alpha23 glu). J. Lab. Clin. Med. 66: 886-887, 1965.

  204. Kraus, A. P., Miyaji, T., Iuchi, I., Kraus, L. M. Hemoglobin Memphis, a new variant of sickle cell anemia. Trans. Assoc. Am. Phys. 80: 297-304, 1967. [PubMed: 6082248, related citations]

  205. Labie, D., Rosa, J. Sur une nouvelle hemoglobine anormale: l'hemoglobine J (alpha-54 glutamine a glutamique). Nouv. Rev. Franc. Hemat. 6: 426-430, 1966. [PubMed: 4225368, related citations]

  206. Labossiere, A., Vella, F. Hemoglobin I in a white family in Saskatoon. Clin. Biochem. 4: 104-113, 1971. [PubMed: 5128292, related citations] [Full Text]

  207. Lacan, P., Aubry, M., Couprie, N., Francina, A. Two new alpha chain variants: Hb Die (alpha-93(FG5)val-to-ala (alpha-1)) and Hb Beziers [alpha-99(G6)lys-to-asn (alpha-1)]. Hemoglobin 28: 59-63, 2004. [PubMed: 15008266, related citations] [Full Text]

  208. Lacan, P., Francina, A., Souillet, G., Aubry, M., Couprie, N., Dementhon, L., Becchi, M. Two new alpha chain variants: Hb Boghe (alpha-58(E7)his-to-gln, alpha-2), a variant on the distal histidine, and Hb Charolles (alpha-103(G10)his-to-tyr, alpha-1). Hemoglobin 23: 345-352, 1999. [PubMed: 10569723, related citations] [Full Text]

  209. Lacombe, C., Soria, J., Arous, N., Blouquit, Y., Bardakdjian, J., Riou, J., Galacteros, F. A new case of Hb Dagestan (alpha60(E9) lys-to-glu). Hemoglobin 11: 39-41, 1987. [PubMed: 3108202, related citations] [Full Text]

  210. Lambridis, A. J., Ramsay, M., Jenkins, T. The haematological puzzle of Hb J Cape Town is partly solved. Brit. J. Haemat. 63: 363-367, 1986. [PubMed: 3718876, related citations] [Full Text]

  211. Langdown, J. V., Davidson, R. J. L., Williamson, D. A new alpha chain variant, Hb Turriff (alpha-99(G6)lys-to-glu): the interference of abnormal hemoglobins in Hb A(1c) determination. Hemoglobin 16: 11-17, 1992. [PubMed: 1634357, related citations] [Full Text]

  212. Leder, A., Miller, H. I., Hamer, D. H., Seidman, J. G., Norman, B., Sullivan, M., Leder, P. Comparison of cloned mouse alpha- and beta-globin genes: conservation of intervening sequence locations and extragenic homology. Proc. Nat. Acad. Sci. 75: 6187-6191, 1978. [PubMed: 282635, related citations] [Full Text]

  213. Leder, A., Swan, D., Ruddle, F., D'Eustachio, P. D., Leder, P. Dispersion of alpha-like globin genes of the mouse to three different chromosomes. Nature 293: 196-200, 1981. [PubMed: 6168916, related citations] [Full Text]

  214. Leder, A., Wiener, E., Lee, M. J., Wickramasinghe, S. N., Leder, P. A normal beta-globin allele as a modifier gene ameliorating the severity of alpha-thalassemia in mice. Proc. Nat. Acad. Sci. 96: 6291-6295, 1999. [PubMed: 10339580, images, related citations] [Full Text]

  215. Lee-Potter, J. P., Deacon-Smith, R. A., Lehmann, H., Robb, L. Haemoglobin Ferndown (alpha6 aspartic acid-to-valine). FEBS Lett. 126: 117-119, 1981. [PubMed: 7238857, related citations] [Full Text]

  216. Lehmann, H., Carrell, R. W. Variations in the structure of human haemoglobins: with particular reference to the unstable haemoglobins. Brit. Med. Bull. 25: 14-23, 1969. [PubMed: 5782754, related citations] [Full Text]

  217. Lehmann, H., Carrell, R. W. Nomenclature of the alpha-thalassaemias. Lancet 323: 552-553, 1984. Note: Originally Volume I. [PubMed: 6199634, related citations] [Full Text]

  218. Lehmann, H. Haemoglobins and haemoglobinopathies. In: Lehmann, H.; Betke, K.: Haemoglobin-Colloquium. Stuttgart: Georg Thieme Verlag (pub.) 1962. Pp. 1-14.

  219. Li, H. J., Liu, D. X., Li, L., Cha, S. C., Wilson, J. B., Webber, B. B., Huisman, T. H. J. Hb Guangzhou-Hangzhou or alpha64(E13)asp-to-gly observed in members of a Chinese family living in Xinjiang. Hemoglobin 14: 441-444, 1990. [PubMed: 2283298, related citations] [Full Text]

  220. Li, H., Zhao, X., Qin, F., Li, H., Li, L., He, X., Chang, X., Li, Z., Liang, K., Xing, F., Chang, W., Wong, R., Yang, I., Li, F., Zhang, T., Tian, R., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Abnormal hemoglobins in the Silk Road region of China. Hum. Genet. 86: 231-235, 1990. [PubMed: 2265836, related citations] [Full Text]

  221. Liang, C., Tao, H., Lo, H., Huang, S., Li, R., Wang, B. Hemoglobin Shuangfeng (alpha27 (B8) glu-to-lys): a new unstable hemoglobin variant. Hemoglobin 5: 691-700, 1981. [PubMed: 7338471, related citations] [Full Text]

  222. Liang, C.-C., Chen, S., Yang, K., Jia, P., Ma, Y., Li, T., Ni, X., Wang, X., Deng, Q., Yao, S. Hemoglobin Beijing (alpha16 (A14) lys-to-asn): a new fast-moving hemoglobin variant. Hemoglobin 6: 629-633, 1982. [PubMed: 7161110, related citations]

  223. Liang, C.-C., Chen, S.-S., Jia, P.-C., Wang, L.-F., Luo, H.-Y., Liu, G.-Y., Liang, S., Lung, G.-F., Yu, C.-M., Zuang, L.-Z., Liant, B.-L., Tang, Z.-N. Hemoglobin Duan (alpha75(EF4) asp-to-ala), a new variant found in China. Hemoglobin 5: 481-486, 1981. [PubMed: 7275664, related citations]

  224. Liang, S., Tang, Z., Su, C., Lung, Q., Liang, R., Fei, Y. J., Kutlar, F., Wilson, J. B., Webber, B. B., Hu, H., Huisman, T. H. J. Hb Duan (alpha-75(EF4)asp-to-ala), Hb Westmead (alpha-122(H5)his-to-gln), and alpha-thalassemia-2 (-4.2 kb deletion) in a Chinese family. Hemoglobin 12: 13-21, 1988. [PubMed: 3384694, related citations] [Full Text]

  225. Lie-Injo, L. E., Dozy, A. M., Kan, Y. W., Lopes, M., Todd, D. The alpha-globin gene adjacent to the gene for Hb Q (alpha 74 asp-to-his) is deleted, but not that adjacent to the gene for Hb G (alpha 30 glu-to-gln); three-fourths of the alpha-globin genes are deleted in Hb Q-alpha-thalassemia. Blood 54: 1407-1416, 1979. [PubMed: 508945, related citations]

  226. Lie-Injo, L. E., Pillay, R. P., Thuraisingham, V. Further cases of haemoglobin Q-H disease (Hb Q-alpha thalassemia). Blood 28: 830-839, 1966. [PubMed: 5960254, related citations]

  227. Lie-Injo, L. E., Sadono, (NI). Haemoglobin O (Buginese X) in Sulawesi. Brit. Med. J. 1: 1461-1462, 1958. [PubMed: 13536534, related citations] [Full Text]

  228. Liebhaber, S. A., Cash, F. E., Ballas, S. K. Human alpha-globin gene expression: the dominant role of the alpha(2)-locus in mRNA and protein synthesis. J. Biol. Chem. 261: 15327-15333, 1986. [PubMed: 3771577, related citations]

  229. Liebhaber, S. A., Cash, F. E. Locus assignment of alpha-globin structural mutations by hybrid-selected translation. J. Clin. Invest. 75: 64-70, 1985. [PubMed: 2981252, related citations] [Full Text]

  230. Liebhaber, S. A., Goossens, M. J., Kan, Y. W. Cloning and complete nucleotide sequence of human 5(prime)-alpha-globin gene. Proc. Nat. Acad. Sci. 77: 7054-7058, 1980. [PubMed: 6452630, related citations] [Full Text]

  231. Liebhaber, S. A., Goossens, M., Kan, Y. W. Homology and concerted evolution at the alpha-1 and alpha-2 loci of human alpha-globin. Nature 290: 26-29, 1981. [PubMed: 7010180, related citations] [Full Text]

  232. Liebhaber, S. A., Griese, E.-U., Weiss, I., Cash, F. E., Ayyub, H., Higgs, D. R., Horst, J. Inactivation of human alpha-globin gene expression by a de novo deletion located upstream of the alpha-globin gene cluster. Proc. Nat. Acad. Sci. 87: 9431-9435, 1990. [PubMed: 1701260, related citations] [Full Text]

  233. Liebhaber, S. A., Rappaport, E. F., Cash, F. E., Ballas, S. K., Schwartz, E., Surrey, S. Hemoglobin I mutation encoded at both alpha-globin loci on the same chromosome: concerted evolution in the human genome. Science 226: 1449-1451, 1984. [PubMed: 6505702, related citations] [Full Text]

  234. Liu, G.-Y., Zhang, G.-X., Nie, S.-Y., Luo, H.-Y., Teng, Y.-Q., Liu, S.-P., Song, M., Son, L., Chen, S.-S., Jia, P.-C., Liang, C.-C. A case of hemoglobin Iwate (alpha87(F8)his-to-arg) in China. Hemoglobin 7: 279-282, 1983. [PubMed: 6874376, related citations]

  235. Lorkin, P. A., Charlesworth, D., Lehmann, H., Rahbar, S., Tuchinda, S., Lie-Injo, L. E. Two haemoglobins Q, alpha 74 (EF3) and alpha 75 (EF4) aspartic acid to histidine. Brit. J. Haemat. 19: 117-125, 1970. [PubMed: 5460202, related citations] [Full Text]

  236. Lorkin, P. A., Huntsman, R. G., Ager, J. A. M., Lehmann, H., Vella, F., Dakbre, P. D. Hemoglobin G (Norfolk): alpha 85 (F6) asp-to-asn. Biochim. Biophys. Acta 379: 22-27, 1975. [PubMed: 1115797, related citations] [Full Text]

  237. Lu, Y.-Q., Liu, J.-F., Huang, C.-H., Huang, P.-Y., Hu, H.-L., Peng, X.-H., Chen, S.-S., Jia, P.-C., Yang, K.-G., Liang, C.-C., Zuo, C.-R. Hemoglobin Lille (alpha74 (EF3) asp-to-ala): the first instance in China. Hemoglobin 8: 523-527, 1984. [PubMed: 6500991, related citations]

  238. Maggio, A., Massa, A., Giampaolo, A., Mavilio, F., Tentori, L. Occurrence of Hb M Iwate (alpha 87 his-to-tyr) in an Italian carrier. Hemoglobin 5: 205-208, 1981. [PubMed: 7216821, related citations] [Full Text]

  239. Malcorra-Azpiazu, J. J., Balda-Aguirre, M. I., Diaz-Chico, J. C., Kutlar, F., Kutlar, A., Wilson, J. B., Hu, H., Huisman, T. H. J. Hb Le Lamentin or alpha20 (B1) his-to-gln found in a Spanish family. Hemoglobin 12: 201-205, 1988. [PubMed: 3384713, related citations] [Full Text]

  240. Mamalaki, A., Horanyi, M., Szelenyi, J., Moschonas, N. K. Locus assignment of human alpha-globin structural mutants by selective enzymatic amplification of alpha-1 and alpha-2-globin cDNAs. Hum. Genet. 85: 509-512, 1990. [PubMed: 2227935, related citations] [Full Text]

  241. Marengo-Rowe, A. J., Beale, D., Lehmann, H. New human hemoglobin variant from southern Arabia: G-Audhali (alpha-23(b4) glutamic acid-valine) and the variability of B4 in human haemoglobin. Nature 219: 1164-1166, 1968. [PubMed: 5675638, related citations] [Full Text]

  242. Marinucci, M., Mavilio, F., Massa, A., Gabbianelli, M., Fontanarosa, P. P., Camagna, A., Ignesti, C., Tentori, L. A new abnormal human hemoglobin: Hb Prato (alpha31 arg-to-ser). Biochim. Biophys. Acta 578: 534-540, 1979. [PubMed: 486536, related citations] [Full Text]

  243. Marinucci, M., Mavilio, F., Tentori, L., Bestetti, A. Occurrence of Hb J Paris in an Italian family and recombination studies on the free abnormal alpha-chain. Hemoglobin 3: 465-469, 1979. [PubMed: 511586, related citations] [Full Text]

  244. Marinucci, M., Mavilio, F., Tentori, L., D'Erasmo, F., Colapietro, A., De Stasio, G., Di Fonzo, S. A new human hemoglobin variant: Hb Bari (alpha 45(CD3) his-to-gln). Biochim. Biophys. Acta 622: 315-319, 1980. [PubMed: 7378457, related citations] [Full Text]

  245. Marti, H. R., Beale, D., Lehmann, H. Haemoglobin Koelliker: a new acquired haemoglobin appearing after severe haemolysis: alpha-2 (minus 141 arg) beta-2. Acta Haemat. 37: 174-180, 1967. [PubMed: 4961849, related citations] [Full Text]

  246. Martin, G., Villegas, A., Calero, F., del Palacio, S., Lopez, J. C., Lopez, M., Espinos, D. Hb O Padova in a Spanish family. Acta Haemat. 84: 1-4, 1990. [PubMed: 2117321, related citations] [Full Text]

  247. Martinez, G., Lima, F., Residenti, C., Colombo, B. Hb J Camaguey alpha 141 (HC3) arg-to-gly: a new abnormal human hemoglobin. Hemoglobin 2: 47-52, 1978. [PubMed: 640841, related citations] [Full Text]

  248. Masala, B., Manca, L., Stangoni, A., Cuccuru, G. B., Wilson, J. B., Webber, B. B., Kutlar, A., Huisman, T. H. J. Hb Sassari or alpha126 (H9) asp-to-his observed in a family from northern Sardinia. Hemoglobin 11: 373-378, 1987. [PubMed: 3667323, related citations] [Full Text]

  249. Masala, B. Hemoglobinopathies in Sardinia. Hemoglobin 16: 331-351, 1992. [PubMed: 1517114, related citations] [Full Text]

  250. Mavilio, F., Marinucci, M., Tentori, L., Fontanarosa, P. P., Rossi, U., Biagiotti, S. Hemoglobin Legnano (alpha 141 (HC3) arg-to-leu): a new abnormal human hemoglobin with high oxygen affinity. Hemoglobin 2: 249-259, 1978. [PubMed: 701083, related citations] [Full Text]

  251. Mayne, E. E., Elder, G. E., Lappin, T. R. J., Ferguson, L. A. K. Hb M Iwate (alpha87 his-to-tyr): de novo mutation in an Irish family. Hemoglobin 10: 205-208, 1986. [PubMed: 3957697, related citations] [Full Text]

  252. McDonald, M. J., Michalski, L. A., Turci, S. M., Guillette, R. A., Jue, D. L., Johnson, M. H., Moo-Penn, W. F. Structural, functional, and subunit assembly properties of Hb Attleboro [alpha138(H21)ser-to-pro], a variant possessing a site mutation at a critical C-terminal residue. Biochemistry 29: 173-178, 1990. [PubMed: 2108715, related citations] [Full Text]

  253. Meloni, T., Pilo, G., Camardella, L., Cancedda, F., Lania, A., Pepe, G., Luzzatto, L. Coexistence of three hemoglobins with different alpha-chains in two unrelated children (with family studies indicating polymorphism in the number of alpha-globin genes in the Sardinian population). Blood 55: 1025-1032, 1980. [PubMed: 6155159, related citations]

  254. Meyering, C. A., Israels, A. L., Sebens, T., Huisman, T. H. J. Studies on the heterogeneity of hemoglobin. II. The heterogeneity of different human hemoglobin types in carboxymethyl cellulose and in amberlite irc-50 chromatography: quantitative aspects. Clin. Chim. Acta 5: 208-222, 1960.

  255. Miyaji, T., Iuchi, I., Yamamoto, K., Ohba, Y., Shibata, S. Amino acid substitution of hemoglobin Ube 2 (alpha 68 asp): an example of successful application of partial hydrolysis of peptide with 5 percent acetic acid. Clin. Chim. Acta 16: 347-352, 1967. [PubMed: 6035181, related citations] [Full Text]

  256. Miyaji, T., Ueda, S., Shibata, S., Tamura, A., Sasaki, H. Further studies on the fingerprint of Hb M (Iwate). Acta Haemat. Jpn. 25: 169-175, 1962. [PubMed: 14474785, related citations]

  257. Miyashita, H., Hashimoto, K., Mohri, H., Ohokubo, T., Harano, T., Harano, K., Imai, K. Hb Kanagawa (alpha-40(C5)lys-to-met): a new alpha chain variant with an increased oxygen affinity. Hemoglobin 16: 1-10, 1992. [PubMed: 1634355, related citations] [Full Text]

  258. Moi, P., Cash, F. E., Liebhaber, S. A., Cao, A., Pirastu, M. An initiation codon mutation (AUG-to-GUG) of the human alpha-1-globin gene: structural characterization and evidence for a mild thalassemic phenotype. J. Clin. Invest. 80: 1416-1421, 1987. [PubMed: 3680504, related citations] [Full Text]

  259. Moo-Penn, W. F., Baine, R. M., Jue, D. L., Johnson, M. H., McGuffey, J. E., Benson, J. M. Hemoglobin Evanston: alpha14(A12) trp-to-arg--a variant hemoglobin associated with alpha-thalassemia-2. Biochim. Biophys. Acta 747: 65-70, 1983. [PubMed: 6882779, related citations] [Full Text]

  260. Moo-Penn, W. F., Bechtel, K. C., Johnson, M. H., Jue, D. L., Holland, S., Huff, C., Schmidt, R. M. Hemoglobin (Jackson) alpha 127 (H10) lys-to-asn. Am. J. Clin. Path. 66: 453-456, 1976. [PubMed: 949045, related citations] [Full Text]

  261. Moo-Penn, W. F., Jue, D. L., Baine, R. M. Hemoglobin J Rovigo (alpha 53 ala-to-asp) in association with beta thalassemia. Hemoglobin 2: 443-445, 1978. [PubMed: 31339, related citations] [Full Text]

  262. Moo-Penn, W. F., Jue, D. L., Johnson, M. H., McGuffey, J. E., Simpkins, H., Katz, J. Hemoglobin Queens: alpha34(B15) leu-to-arg structural and functional properties and its association with Hb E. Am. J. Hemat. 13: 323-327, 1982. [PubMed: 7158628, related citations] [Full Text]

  263. Moo-Penn, W. F., Jue, D. L., Johnson, M. H., Therrell, B. L. Hemoglobin Swan River (alpha6(A4)asp-to-gly). Hemoglobin 11: 61-62, 1987. [PubMed: 3583768, related citations] [Full Text]

  264. Moo-Penn, W. F., Swan, D. C., Hine, T. K., Baine, R. M., Jue, D. L., Benson, J. M., Johnson, M. H., Virshup, D. M., Zinkham, W. H. Hb Catonsville (glutamic acid inserted between pro-37 (C2) alpha and thr-38 (C3) alpha). J. Biol. Chem. 264: 21454-21457, 1989. [PubMed: 2574721, related citations]

  265. Moo-Penn, W. F., Therrell, B. L., Jr., Jue, D. L., Johnson, M. H. Hemoglobin Cubujuqui (alpha141 arg-to-ser): functional consequences of the alteration of the C-terminus of the alpha chain of hemoglobin. Hemoglobin 5: 715-724, 1981. [PubMed: 7338473, related citations] [Full Text]

  266. Murayama, M. Chemical difference between normal human haemoglobin and haemoglobin-I. Nature 196: 276-277, 1962.

  267. Musumeci, S., Schiliro, G., Pizzarelli, G., Fischer, A., Russo, G. Thalassemia of intermediate severity resulting from the interaction between alpha- and beta-thalassemia. J. Med. Genet. 15: 448-451, 1978. [PubMed: 745216, related citations] [Full Text]

  268. Nakashima, H., Fujiyama, A., Kagiyama, S., Imamura, T. Genetic polymorphisms of gene conversion within the duplicated human alpha-globin loci. Hum. Genet. 84: 568-570, 1990. [PubMed: 1970975, related citations] [Full Text]

  269. Nakatsuji, T., Abraham, B. L., Lam, H., Wilson, J. B., Huisman, T. H. J. Hb Winnipeg or alpha75 (EF4) asp-to-tyr in a large Caucasian family living in Georgia, USA. Hemoglobin 7: 105-110, 1983. [PubMed: 6841125, related citations] [Full Text]

  270. Nakatsuji, T., Miwa, S., Ohba, Y., Miyaji, T., Matsumoto, N., Matsuoka, I. Hemoglobin Tottori (alpha59 (E8) glycine-to-valine): a new unstable hemoglobin. Hemoglobin 5: 427-439, 1981. [PubMed: 7275660, related citations] [Full Text]

  271. Nakatsuji, T., Wilson, J. B., Huisman, T. H. J. Hb Cordele alpha47 (CE5) asp-to-ala, a mildly unstable variant observed in black twins. Hemoglobin 8: 37-46, 1984. [PubMed: 6547117, related citations] [Full Text]

  272. Ngiwsara, L., Srisomsap, C., Winichagoon, P., Fucharoen, S., Svasti, J. Two cases of compound heterozygosity for Hb Hekinan [alpha27(B8)glu-to-asp (alpha-1)] and alpha-thalassemia in Thailand. Hemoglobin 28: 145-150, 2004. [PubMed: 15182057, related citations] [Full Text]

  273. Niazi, G. A., Efremov, G. D., Nikolov, N., Hunter, E., Jr., Huisman, T. H. J. Hemoglobin Strumica or alpha 112(G19) his-to-arg. (with an addendum: hemoglobin J-Paris-I, alpha 12(A10) ala-to-asp, in the same population). Biochim. Biophys. Acta 412: 181-186, 1975. [PubMed: 1191675, related citations] [Full Text]

  274. North, M. L., Hassan, W., Thillet, J., Schwartz, M., Taubert, C., Ritter, J., Gandar, R., Rosa, J. Etude clinique et biologique d'un cas d'hemoglobine hybride S-Stanleyville II (alpha 78 asn-to-lys, beta 6 glu-to-val). Nouv. Rev. Franc. Hemat. 22: 235-241, 1980. [PubMed: 6782549, related citations]

  275. Nozari, G., Rahbar, S., Darbre, P., Lehmann, H. Hemoglobin Setif (alpha 94 (G1) asp-to-tyr) in Iran--a report of 9 cases. Hemoglobin 1: 289-291, 1977. [PubMed: 893131, related citations] [Full Text]

  276. O'Brien, C., Gray, M. J., Jacobs, A. S. A survey of cord bloods for abnormal hemoglobin, with further observations on hemoglobin I (Burlington). Am. J. Obstet. Gynec. 88: 816-822, 1964. [PubMed: 14130347, related citations] [Full Text]

  277. Ohba, Y., Fujisawa, K., Imai, K., Leowattana, W., Tani, Y., Ami, M., Miyaji, T. A new alpha chain variant Hb Tonosho [alpha110(G17)ala-to-thr]: subunit dissociation during cation exchange chromatography for Hb A1c assay. Hemoglobin 14: 413-422, 1990. [PubMed: 2283295, related citations] [Full Text]

  278. Ohba, Y., Hattori, Y., Matsuoka, M., Miyaji, T., Fuyuno, K. Hb Kokura (alpha 47 (CE5) asp-to-gly): a slightly unstable variant. Hemoglobin 6: 69-74, 1982. [PubMed: 7068437, related citations] [Full Text]

  279. Ohba, Y., Imai, K., Uenaka, R., Ami, M., Fujisawa, K., Itoh, K., Hirakawa, K., Miyaji, T. Hb Miyano or alpha41(C6)thr-to-ser: a new high oxygen affinity alpha chain variant found in an erythremic blood donor. Hemoglobin 13: 637-647, 1989. [PubMed: 2634665, related citations] [Full Text]

  280. Ohba, Y., Miyaji, T., Matsuoka, M., Morito, M., Iuchi, I. Characterization of Hb Ube-4: alpha 116 (GH4) glu-to-ala. Hemoglobin 2: 181-186, 1978. [PubMed: 640856, related citations] [Full Text]

  281. Ohba, Y., Miyaji, T., Matsuoka, M., Takeda, I., Fukuba, Y., Shibata, S., Ohkura, K. Hemoglobin Matsue-Oki: alpha 75 (EF4) aspartic acid-to-asparagine. Hemoglobin 1: 383-388, 1977. [PubMed: 893135, related citations] [Full Text]

  282. Ohba, Y., Miyaji, T., Matsuoka, M., Yokoyama, M., Numakura, H., Nagata, K., Takebe, Y., Izumi, Y., Shibata, S. Hemoglobin Hirosaki (alpha 43(CE1) phe-to-leu), a new unstable variant. Biochim. Biophys. Acta 405: 155-160, 1975. [PubMed: 1182166, related citations] [Full Text]

  283. Ohba, Y., Miyaji, T., Matsuoka, M., Yokoyama, M. Further studies on hemoglobin Hirosaki: demonstration of its presence at low concentration. Hemoglobin 2: 281-286, 1978. [PubMed: 701086, related citations] [Full Text]

  284. Ohba, Y., Yamamoto, K., Kawata, R., Miyaji, T. Hyperunstable hemoglobin Toyama, alpha136 (H19) leu to arg detection and identification by in vitro biosynthesis with radioactive amino acids. Hemoglobin 11: 539-556, 1987. [PubMed: 2833478, related citations] [Full Text]

  285. Ohba, Y., Yoshinaka, H., Hattori, Y., Matsuoka, M., Miyaji, T. Hemoglobin J Habana found in a cord blood of a Japanese. Hemoglobin 7: 327-329, 1983. [PubMed: 6618889, related citations] [Full Text]

  286. Ojwang, P. J., Ogada, T., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hb Savaria or alpha(2)49(CE7) ser-to-arg in an indigenous female from Kenya. Hemoglobin 9: 197-200, 1985. [PubMed: 3839775, related citations] [Full Text]

  287. Ooya, I., Kawamura, K., Seita, M., Hanada, M., Hitsumoto, A. Hemoglobin Kokura which was discovered in Kokura. (Abstract) 23rd General Meeting of the Japanese Society of Hematology, Kyoto 1961.

  288. Orkin, S. H. The duplicated human alpha globin lie close together in cellular DNA. Proc. Nat. Acad. Sci. 75: 5950-5954, 1978. [PubMed: 282616, related citations] [Full Text]

  289. Orringer, E. P., Wilson, J. B., Huisman, T. H. J. Hemoglobin Chapel Hill or alpha 74 asp-to-gly. FEBS Lett. 65: 297-300, 1976. [PubMed: 8332, related citations] [Full Text]

  290. Ostertag, W., Von Ehrenstein, G., Charache, S. Duplicated alpha-chain genes in Hopkins-2 haemoglobin of man and evidence for unequal crossing over between them. Nature N.B. 237: 90-94, 1972. [PubMed: 4503919, related citations] [Full Text]

  291. Overly, W. L., Rosenberg, A., Harris, J. W. Hemoglobin M (Reserve): studies on identification and characterization. J. Lab. Clin. Med. 69: 62-87, 1967. [PubMed: 6018071, related citations]

  292. Paglietti, E., Barella, S., Satta, S., Perra, C., Cao, A., Galanello, R. Hb Sassari [alpha-126(H9)asp-to-his] results from a GAC-to-CAC mutation in the alpha-1-globin gene. Hemoglobin 22: 65-67, 1998. [PubMed: 9494049, related citations] [Full Text]

  293. Phillips, J. A., III, Scott, A. F., Smith, K. D., Young, K. E., Lightbody, K. L., Jiji, R. M., Kazazian, H. H., Jr. A molecular basis for hemoglobin-H diseases in American blacks. Blood 54: 1439-1445, 1979. [PubMed: 508947, related citations]

  294. Phillips, J. A., III, Vik, T. A., Scott, A. F., Young, K. E., Kazazian, H. H., Jr., Smith, K. D., Fairbanks, V. F., Koenig, H. M. Unequal crossing-over: a common basis of single alpha-globin genes in Asians and American blacks with hemoglobin-H disease. Blood 55: 1066-1069, 1980. [PubMed: 6246995, related citations]

  295. Pik, C., Tonz, O. Nature of haemoglobin M (Oldenburg). Nature 210: 1182, 1966. [PubMed: 5964191, related citations] [Full Text]

  296. Pobedimskaya, D. D., Molchanova, T. P., Huisman, T. H. J. Hb Ramona or alpha(2)24(B5)tyr-to-cys. Hemoglobin 18: 365-366, 1994. [PubMed: 7852094, related citations] [Full Text]

  297. Pootrakul, S., Boonyarat, D., Kematorn, B., Suanpan, S., Wasi, P. Hemoglobin Thailand (alpha 56 (E5) lys-to-thr): a new abnormal human hemoglobin. Hemoglobin 1: 781-798, 1977. [PubMed: 604316, related citations] [Full Text]

  298. Pootrakul, S., Dixon, G. H. Hemoglobin Mahidol: a new hemoglobin alpha-chain mutant. Canad. J. Biochem. 48: 1066-1078, 1970. [PubMed: 5475469, related citations] [Full Text]

  299. Pootrakul, S., Kematorn, B., Na-Nakorn, S., Suanpan, S. A new haemoglobin variant. Haemoglobin Anantharaj (alpha 11 (A9) lysine-to-glutamic acid). Biochim. Biophys. Acta 405: 161-166, 1975. [PubMed: 1174563, related citations] [Full Text]

  300. Pootrakul, S., Srichiyanont, S., Wasi, P., Suanpan, S. Hemoglobin Siam (alpha 15 arg): a new alpha-chain variant. Humangenetik 23: 199-204, 1974. [PubMed: 4135957, related citations]

  301. Popp, R. A., Lalley, P. A., Whitney, J. B., III, Anderson, W. F. Mouse alpha-like globin genes and alpha-globin-like pseudogenes are not syntenic. Proc. Nat. Acad. Sci. 78: 6362-6366, 1981. [PubMed: 6947235, related citations] [Full Text]

  302. Poyart, C., Krishnamoorthy, R., Bursaux, E., Gacon, G., Labie, D. Structural and functional studies of haemoglobin Suresnes or alpha 141 (HC3) arg-to-his, a new high oxygen affinity mutant. FEBS Lett. 69: 103-107, 1976. [PubMed: 11123, related citations] [Full Text]

  303. Prato, V., Gallo, E., Ricco, G., Mazza, U., Bianco, G., Lehmann, H. Haemolytic anaemia due to haemoglobin Torino. Brit. J. Haemat. 19: 105-115, 1970. [PubMed: 5453914, related citations] [Full Text]

  304. Prehu, C., Bost, M., Barro, C., Prome, D., Riou, J., Godart, C., Kister, J., Galacteros, F., Wajcman, H. Hb Roubaix (alpha-55(E4)val-to-leu): a new neutral hemoglobin variant involving the alpha-1 gene. Hemoglobin 23: 361-365, 1999. [PubMed: 10569725, related citations] [Full Text]

  305. Prehu, C., Hanichi, A., Yapo, A. P., Claparols, C., Prome, D., Riou, J., Wajcman, H. Hb Douala [alpha-3(A1)ser-phe]: a new alpha-1 gene mutation in a Cameroonian woman heterozygous for Hb S and a 3.7 kb deletional alpha-thalassemia. Hemoglobin 25: 323-329, 2001. [PubMed: 11570726, related citations] [Full Text]

  306. Priest, J. R., Watterson, J., Jones, R. T., Faassen, A. E., Hedlund, B. E. Mutant fetal hemoglobin causing cyanosis in a newborn. Pediatrics 83: 734-736, 1989. [PubMed: 2470017, related citations]

  307. Proudfoot, N. J., Maniatis, T. The structure of a human alpha-globin pseudogene and its relationship to alpha-globin gene duplication. Cell 21: 537-544, 1980. [PubMed: 7407925, related citations] [Full Text]

  308. Pulsinelli, P. D., Perutz, M. F., Nagel, R. L. Structure of hemoglobin M (Boston), a variant with a five-coordinated ferric heme. Proc. Nat. Acad. Sci. 70: 3870-3874, 1973. [PubMed: 4521212, related citations] [Full Text]

  309. Qualtieri, A., De Marco, E. V., Crescibene, L., Andreoli, V., Bagala, A., Scornaienchi, M., Brancati, C., Greco, C. M. Hb J-Wenchang-Wuming or alpha-11(A9)lys-to-gln in an Italian woman. Hemoglobin 19: 277-280, 1995. [PubMed: 8537231, related citations] [Full Text]

  310. Quattrin, N., Ventruto, V. Hemoglobin Mexico in a Sardinian woman. Helv. Med. Acta 33: 388-394, 1967. [PubMed: 6038433, related citations]

  311. Rahbar, S., Ala, F., Akhavan, E., Nowzari, G., Shoa'i, I., Zamanianpoor, M. H. Two new hemoglobins: hemoglobin Perspolis (alpha 64 (E13) asp-to-tyr) and hemoglobin J Kurosh (alpha 19 (AB) ala-to-asp). Biochim. Biophys. Acta 427: 119-125, 1976. [PubMed: 1259994, related citations] [Full Text]

  312. Rahbar, S., Kinderlerer, J. L., Lehmann, H. Haemoglobin L Persian Gulf: alpha 57 (E6) glycine leads to arginine. Acta Haemat. 42: 169-175, 1969. [PubMed: 4982774, related citations] [Full Text]

  313. Rahbar, S., Mahdavi, N., Nowzari, G., Mostafavi, I. Hemoglobin Arya: alpha 47, aspartic acid to asparagine. Biochim. Biophys. Acta 386: 525-529, 1975. [PubMed: 1138883, related citations] [Full Text]

  314. Rahbar, S., Nowzari, G., Daneshmand, P. Hemoglobin Daneshgah-Tehran alpha 72 (EF1) histidine-to-arginine. Nature N.B. 245: 268-269, 1973. [PubMed: 4518991, related citations] [Full Text]

  315. Ranney, H. M., O'Brien, C., Jacobs, A. S. An abnormal human foetal haemoglobin with an abnormal alpha-polypeptide chain. Nature 194: 743-745, 1962. [PubMed: 14490283, related citations] [Full Text]

  316. Raper, A. B. Unusual haemoglobin variant in a Gujerati Indian. Brit. Med. J. 1: 1285-1286, 1957. [PubMed: 13426607, related citations] [Full Text]

  317. Reynolds, C. A., Huisman, T. H. J. Hemoglobin Russ or alpha-2 (51 arg) beta-2. Biochim. Biophys. Acta 130: 541-543, 1966. [PubMed: 5972865, related citations]

  318. Rhoda, M.-D., Martin, J., Blouquit, Y., Garel, M.-C., Edelstein, S. J., Rosa, J. Sickle cell hemoglobin fiber formation strongly inhibited by the Stanleyville II mutation (alpha78 asn-to-lys). Biochem. Biophys. Res. Commun. 111: 8-13, 1983. [PubMed: 6681956, related citations] [Full Text]

  319. Romao, L., Cash, F., Weiss, I., Liebhaber, S., Pirastu, M., Galanello, R., Loi, A., Paglietti, E., Ioannou, P., Cao, A. Human alpha-globin gene expression is silenced by terminal truncation of chromosome 16p beginning immediately 3-prime of the zeta-globin gene. Hum. Genet. 89: 323-328, 1992. [PubMed: 1351037, related citations] [Full Text]

  320. Romero, M. J., Garrido, M. L., Abril, E., Garrido, F., de Pablos, J. Ma. Detection of Hb J-Camaguey (alpha-141(HC3)arg-to-gly) in three Spanish families. Hemoglobin 19: 287-289, 1995. [PubMed: 8537233, related citations] [Full Text]

  321. Rosa, J., Maleknia, N., Vergos, D., Dunet, R. Une nouvelle hemoglobine anormale: l'hemoglobine J(alpha-Paris) 12 ala-a-asp. Nouv. Rev. Franc. Hemat. 6: 423-426, 1966. [PubMed: 4225453, related citations]

  322. Rubin, E. M., Kan, Y. W. A simple sensitive prenatal test for hydrops fetalis caused by alpha-thalassaemia. Lancet 325: 75-77, 1985. Note: Originally Volume I. [PubMed: 2857027, related citations] [Full Text]

  323. Rucknagel, D. L., Page, E. B., Jensen, W. N. Hemoglobin I: an inherited hemoglobin anomaly. Blood 10: 999-1009, 1955. [PubMed: 13260359, related citations]

  324. Saenz, G. F., Alvarado, M., Arroyo, G., Alfaro, E., Montero, G., Jimenez, J., Martinez, G., Lima, F., Colombo, B. Hemoglobin Suresnes in a Costa-Rican woman of Spanish-Indian ancestry. Hemoglobin 2: 383-387, 1978. [PubMed: 701092, related citations] [Full Text]

  325. Saenz, G. F., Elizondo, J., Alvarado, M. A., Atmetlla, F., Arroyo, G., Martinez, G., Lima, F., Colombo, B. Chemical characterization of a new haemoglobin variant Haemoglobin J (Cubujuqui) (alpha 141 (HC3) arg-to-ser). Biochim. Biophys. Acta 494: 48-50, 1977. [PubMed: 901812, related citations] [Full Text]

  326. Sanna, M. T., Giardina, B., Scatena, R., Pellegrini, M., Olianas, A., Manca, L., Masala, B., Castagnola, M., Corda, M. Functional alterations in adult and fetal hemoglobin Sassari asp-alpha-126(H9)-to-his: the role of alpha-1-alpha-2 contact. J. Biol. Chem. 269: 18338-18342, 1994. [PubMed: 7518430, related citations]

  327. Sansone, G., Centa, A., Sciarratta, V., Gallo, E., Lehmann, H. Haemoglobin O Indonesia (alpha116 glu-to-lys) in an Italian family. Acta Haemat. 43: 40-47, 1970. [PubMed: 4986187, related citations] [Full Text]

  328. Schiliro, G., Russo, A., Azzia, N., Digiacomo, M. S., Musumeci, S., Russo, G. Hemoglobin Koelliker (alpha minus 141 arg) in favism. Acta Haemat. 67: 229, 1982. [PubMed: 6805217, related citations] [Full Text]

  329. Schiliro, G., Russo-Mancuso, G., Dibenedetto, S. P., Samperi, P., Di Cataldo, A., Ragusa, R., Testa, R. Six rare hemoglobin variants found in Sicily. Hemoglobin 15: 431-437, 1991. [PubMed: 1802885, related citations] [Full Text]

  330. Schmidt, R. M., Bechtel, K. C., Moo-Penn, W. F. Hemoglobin Q(India), alpha 64 (E13) asp-to-his, and beta thalassemia in a Canadian family. Am. J. Clin. Path. 66: 446-448, 1976. [PubMed: 949043, related citations] [Full Text]

  331. Schnedl, W. J., Reisinger, E. C., Katzensteiner, S., Lipp, R. W., Schreiber, F., Hopmeier, P., Krejs, G. J. Haemoglobin O Padova and falsely low haemoglobin A(1c) in a patient with type I diabetes. J. Clin. Path. 50: 434-446, 1997. [PubMed: 9215129, related citations] [Full Text]

  332. Schneider, R. G., Alperin, J. B., Beale, D., Lehmann, H. Hemoglobin I in an American Negro family: structural and hematologic studies. J. Lab. Clin. Med. 68: 940-946, 1966. [PubMed: 5926190, related citations]

  333. Schneider, R. G., Alperin, J. B., Lehmann, H. Sickling tests. Pitfalls in performance and interpretation. JAMA 202: 419-421, 1967. [PubMed: 6072501, related citations] [Full Text]

  334. Schneider, R. G., Atkins, R. J., Hosty, T. S., Tomlin, G., Casey, R., Lehmann, P. A., Lorkin, P. A., Nagai, K. Haemoglobin Titusville (alpha 94 asp-to-asn): a new haemoglobin with a lowered affinity for oxygen. Biochim. Biophys. Acta 400: 365-373, 1975. [PubMed: 1164512, related citations]

  335. Schneider, R. G., Brimhall, B., Jones, R. T., Bryant, R., Mitchell, C. B., Goldberg, A. I. Hb Ft. Worth: alpha27glu-to-gly--a variant present in unusually low concentration. Biochim. Biophys. Acta 243: 164-169, 1971. [PubMed: 5122655, related citations] [Full Text]

  336. Schneider, R. G., Hightower, B., Carpentieri, U., Duerst, M. L., Shih, T. B., Jones, R. T. Hemoglobin Oleander (alpha116 (GH4) glu-to-gln): structural and functional characterization. Hemoglobin 6: 465-480, 1982. [PubMed: 6129203, related citations] [Full Text]

  337. Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P. Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells. Nature Genet. 42: 53-61, 2010. [PubMed: 20010836, images, related citations] [Full Text]

  338. Schroeder, W. A., Jones, R. T. Some aspects of the chemistry and function of human and animal hemoglobins. Fortschr. Chem. Org. Naturst. 23: 113-194, 1965. [PubMed: 5324987, related citations] [Full Text]

  339. Schroeder, W. A., Shelton, J. B., Shelton, J. R., Powars, D. Hemoglobin Sunshine Seth (alpha94 asp-to-his). Hemoglobin 3: 145-159, 1979. [PubMed: 478976, related citations] [Full Text]

  340. Schwartz, I. R., Atwater, J., Repplinger, E., Tocantins, L. M. Sickling of erythrocytes with I-A electrophoretic haemoglobin pattern. Fed. Proc. 16: 115, 1957.

  341. Sciarratta, G. V., Ivaldi, G., Molaro, G. L., Sansone, G., Salkie, M. L., Wilson, J. B., Reese, A. L., Huisman, T. H. J. The characterization of hemoglobin Manitoba or alpha(2)102(G9)ser-to-arg and hemoglobin Contaldo or alpha(2)103(G10)his-to-arg by high performance liquid chromatography. Hemoglobin 8: 169-181, 1984. [PubMed: 6547932, related citations] [Full Text]

  342. Scott, A. F., Phillips, J. A., III, Young, K. E., Kazazian, H. H., Jr., Smith, K. D., Charache, S., Clegg, J. B. The molecular basis of hemoglobin Grady. Am. J. Hum. Genet. 33: 129-133, 1981. [PubMed: 6258429, related citations]

  343. Sellaye, M., Blouquit, Y., Galacteros, F., Arous, N., Monplaisir, N., Rhoda, M. D., Braconnier, F., Rosa, J. A new silent hemoglobin variant in a black family from French West Indies: hemoglobin Le Lamentin alpha20 his-to-gln. FEBS Lett. 145: 128-130, 1982. [PubMed: 7128817, related citations] [Full Text]

  344. Shelton, J. B., Shelton, J. R., Schroeder, W. A., Powars, D. R. Hb Aztec or alpha76(EF5) met-to-thr: detection of a silent mutant by high performance liquid chromatography. Hemoglobin 9: 325-332, 1985. [PubMed: 3935608, related citations] [Full Text]

  345. Shibata, S., Iuchi, I., Miyaji, T., Ueda, S. Spectroscopic characterization of hemoglobin M (Iwate) and hemoglobin M (Kurume), the two variants of hemoglobin M found in Japan. Acta Haemat. Jpn. 24: 477-485 and 486-494, 1961. [PubMed: 13911805, related citations]

  346. Shibata, S., Miyaji, T., Ohba, Y. Abnormal hemoglobins in Japan. Hemoglobin 4: 395-408, 1980. [PubMed: 6998928, related citations] [Full Text]

  347. Shibata, S., Tamura, A., Iuchi, I., Takahashi, H. Hemoglobin M-1. Demonstration of a new abnormal hemoglobin in hereditary nigremia. Acta Haemat. Jpn. 23: 96-104, 1960.

  348. Shibata, S., Ueda, S., Miyaji, T., Imamura, T. Hemoglobinopathies in Japan. Hemoglobin 5: 509-515, 1981. [PubMed: 7275668, related citations] [Full Text]

  349. Shibata, S. Hereditary nigremia (geneticobiochemical aspects). Jpn. J. Hum. Genet. 9: 193-206, 1964. [PubMed: 5896606, related citations]

  350. Shimasaki, S., Iuchi, I., Hidaka, K., Mizuta, W. The survey of abnormal hemoglobin in Kobe district. Jpn. J. Hum. Genet. 28: 127-128, 1983.

  351. Shimasaki, S. A new hemoglobin variant, hemoglobin Nunobiki (alpha141 (HC3) arg-to-cys): notable influence of the carboxy-terminal cysteine upon various physico-chemical characteristics of hemoglobin. J. Clin. Invest. 75: 695-701, 1985. [PubMed: 3973024, related citations] [Full Text]

  352. Shimizu, A., Hayashi, A., Yamamura, Y., Tsugita, A., Kitayama, K. The structural study on a new hemoglobin variant, Hb M (Osaka). Biochim. Biophys. Acta 97: 472-482, 1965. [PubMed: 14323593, related citations] [Full Text]

  353. Shimizu, A., Tsugita, A., Hayashi, A., Yamamura, Y. The primary structure of hemoglobin M (Iwate). Biochim. Biophys. Acta 107: 270-277, 1965. [PubMed: 5880555, related citations] [Full Text]

  354. Shin, M.-C., Chen, C.-M., Liu, S.-C., Huang, C.-H., Lee, T.-P., Chan, W.-L., Chang, J.-G. Hb UBE-2 in a Taiwanese subject: an A-to-G substitution at codon 68 of the alpha-2-globin gene. Hemoglobin 26: 99-101, 2002. [PubMed: 11939522, related citations] [Full Text]

  355. Silvestroni, E., Bianco, I., Brancati, C. Haemoglobins N and P in Italian families. Nature 200: 658-659, 1963. [PubMed: 14109943, related citations] [Full Text]

  356. Simmers, R. N., Mulley, J. C., Hyland, V. J., Callen, D. F., Sutherland, G. R. Mapping the human alpha globin gene complex to 16p13.2-pter. J. Med. Genet. 24: 761-766, 1987. [PubMed: 3430555, related citations] [Full Text]

  357. Smith, E. W., Torbert, J. V. Study of two abnormal hemoglobins with evidence for a new genetic locus for hemoglobin formation. Bull. Johns Hopkins Hosp. 102: 38-45, 1958. [PubMed: 13500096, related citations]

  358. Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Molec. Biol. 98: 503-517, 1975. [PubMed: 1195397, related citations] [Full Text]

  359. Spivak, V. A., Molchanova, T. P., Ermakov, N. V., Tokarev, Y. N., Martinez, G., Szelenyi, J., Horanyi, M., Foldi, J., Hollan, S., Kazieva, H., Shamov, I. A. A new hemoglobin variant: Hb Dagestan alpha60(E9) lys-to-glu. Hemoglobin 5: 133-138, 1981. [PubMed: 6783600, related citations] [Full Text]

  360. Straub, A. C., Lohman, A. W., Billaud, M., Johnstone, S. R., Dwyer, S. T., Lee, M. Y., Bortz, P. S., Best, A. K., Columbus, L., Gaston, B., Isakson, B. E. Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature 491: 473-477, 2012. [PubMed: 23123858, images, related citations] [Full Text]

  361. Suarez, C. R., Jue, D. L., Moo-Penn, W. F. Hemoglobin Savaria--alpha49(CE7)ser-to-arg in the United States. Hemoglobin 9: 627-629, 1985. [PubMed: 3937825, related citations] [Full Text]

  362. Sugihara, J., Imamura, T., Kagimoto, M., Matsuo, T., Yamada, H., Imoto, T., Yanase, T. A new electrophoretic variant of hemoglobin (Munakata) in which a lysine residue is replaced by a methionine residue at position 90 of the alpha-chain. Biochim. Biophys. Acta 744: 119-120, 1983. [PubMed: 6403040, related citations] [Full Text]

  363. Sugihara, J., Imamura, T., Yamada, H., Imoto, T., Matsuo, T., Sumida, I., Yanase, T. A new electrophoretic variant of hemoglobin (Ogi) in which a leucine residue is replaced by an arginine residue at position 34 of the alpha-chain. Biochim. Biophys. Acta 701: 45-48, 1982. [PubMed: 7055587, related citations] [Full Text]

  364. Sukumaran, P. K., Merchant, S. M., Desai, M. P., Wiltshire, B. G., Lehmann, H. Haemoglobin Q India (alpha-64 (E13) aspartic acid to histidine). Associated with beta-thalassemia observed in three Sindhi families. J. Med. Genet. 9: 436-442, 1972. [PubMed: 4646552, related citations] [Full Text]

  365. Sukumaran, P. K., Pik, C. Some observations on haemoglobin L(Bombay). Biochim. Biophys. Acta 104: 290-292, 1965. [PubMed: 5840408, related citations] [Full Text]

  366. Sumida, I., Ohta, Y., Imamura, T., Yanase, T. Hemoglobin Sawara: alpha 6 (A4) aspartic acid leads to alanine. Biochim. Biophys. Acta 322: 23-26, 1973. [PubMed: 4744335, related citations] [Full Text]

  367. Sumida, I. Studies of abnormal hemoglobins in western Japan: frequency of visible hemoglobin variants, and chemical characterization of hemoglobin Sawara (alpha26ala-beta2) and hemoglobin Mugino (Hb L Ferrara; alpha247gly-beta2). Jpn. J. Hum. Genet. 19: 343-363, 1975. [PubMed: 1241593, related citations]

  368. Suzuki, T., Hayashi, A., Yamamura, Y., Enoki, Y., Tyuma, I. Functional abnormality of hemoglobin M (Osaka). Biochem. Biophys. Res. Commun. 19: 691-695, 1965. [PubMed: 5840695, related citations] [Full Text]

  369. Szelenyi, J. G., Horanyi, M., Foldi, J., Hudacsek, J., Istvan, L., Hollan, S. R. A new hemoglobin variant in Hungary: Hb Savaria-alpha 49 (CE7) ser-to-arg. Hemoglobin 4: 27-38, 1980. [PubMed: 7353957, related citations] [Full Text]

  370. Tamura, A. Black blood disease. Jpn. J. Hum. Genet. 9: 183-192, 1964. [PubMed: 5896605, related citations]

  371. Thillet, J., Blouquit, Y., Perrone, F., Rosa, J. Hemoglobin Pontoise: alpha 63 ala-to-asp (E12): a new fast moving variant. Biochim. Biophys. Acta 491: 16-22, 1977. [PubMed: 849454, related citations] [Full Text]

  372. Thompson, R. B., Rau, P. J., Odom, J., Bell, W. N. The sickling phenomenon in a white male without Hb-S. Acta Haemat. 34: 347-353, 1965. [PubMed: 4956511, related citations] [Full Text]

  373. Tonz, O., Simon, H. A., Hasselfeld, W. Untersuchung einer grossen Haemoglobin-M-Sippe. Entdeckung eines neuen Blutfarbstoffes: Hb M-Oldenburg. Schweiz. Med. Wschr. 92: 1311-1313, 1962. [PubMed: 13985279, related citations]

  374. Trabuchet, G., Morle, F., Verdier, G., Godet, J., Benabadji, M., Nigon, V. M. Mapping the alpha-globin genes in Hb J Mexico carriers. Hum. Genet. 62: 164-166, 1982. [PubMed: 6298095, related citations] [Full Text]

  375. Traeger-Synodinos, J., Harteveld, C. L., Kanavakis, E., Giordano, P. C., Kattamis, C., Bernini, L. F. Hb Aghia Sophia (alpha-62(E11)val-to-0 (alpha-1)), an 'in-frame' deletion causing alpha-thalassemia. Hemoglobin 23: 317-324, 1999. [PubMed: 10569720, related citations] [Full Text]

  376. Trincao, C., de Melo, J. M., Lorkin, P. A., Lehmann, H. Haemoglobin J Paris in the south of Portugal (Algarve). Acta Haemat. 39: 291-298, 1968. [PubMed: 4971935, related citations] [Full Text]

  377. Turbpaiboon, C., Svasti, S., Sawangareetakul, P., Winichagoon, P., Srisomsap, C., Siritanaratkul, N., Fucharoen, S., Wilairat, P., Svasti, J. Hb Siam (alpha-15(A13)gly-to-arg(alpha-1) (GGT-to-CGT)) is a typical alpha chain hemoglobinopathy without an alpha-thalassemic effect. Hemoglobin 26: 77-81, 2002. [PubMed: 11939517, related citations] [Full Text]

  378. Van Ros, G., Beale, D., Lehmann, H. Hemoglobin Stanleyville-II (alpha 78 asparagine to lysine). Brit. Med. J. 4: 92-93, 1968. [PubMed: 5696551, related citations] [Full Text]

  379. Vandenplas, S., Higgs, D. R., Nicholls, R. D., Bester, A. J., Mathew, C. G. P. Characterization of a new alpha(0) thalassemia defect in the South African population. Brit. J. Haemat. 66: 539-542, 1987. [PubMed: 3663510, related citations] [Full Text]

  380. Vasseur, C., Blouquit, Y., Kister, J., Prome, D., Kavanaugh, J. S., Rogers, P. H., Guillemin, C., Arnone, A., Galacteros, F., Poyart, C., Rosa, J., Wajcman, H. Hemoglobin Thionville: an alpha-chain variant with a substitution of a glutamate for valine at NA-1 and having an acetylated methionine NH(2) terminus. J. Biol. Chem. 267: 12682-12691, 1992. [PubMed: 1618774, related citations]

  381. Vasseur, C., Guillemin, C., Galacteros, F., Wajcman, H. Hemoglobin Thionville: an alpha chain variant with substitution of a glutamic residue for valine NA-1 and having an extended N-terminus. (Abstract) Blood 76 (suppl. 1): 78a, 1990.

  382. Vella, F., Casey, R., Lehmann, H., Labossiere, A., Jones, T. G. Haemoglobin Ottawa: alpha 15 gly-to-arg. Biochim. Biophys. Acta 336: 25-29, 1974.

  383. Vella, F., Charlesworth, D., Lorkin, P. A., Lehmann, H. Hemoglobin Broussais: alpha 90 lys replaced by asn. Canad. J. Biochem. 48: 908-910, 1970. [PubMed: 5452727, related citations]

  384. Vella, F., Galbraith, P., Wilson, J. B., Wong, S. C., Folger, G. C., Huisman, T. H. J. Hemoglobin St. Claude or alpha 127 (H10) lys-to-thr. Biochim. Biophys. Acta 365: 318-323, 1974. [PubMed: 4429670, related citations] [Full Text]

  385. Vella, F., Wells, R. H. C., Ager, J. A. M., Lehmann, H. A haemoglobinopathy involving haemoglobin H and a new (Q) haemoglobin. Brit. Med. J. 1: 752-755, 1958. [PubMed: 13510789, related citations] [Full Text]

  386. Vella, F., Wiltshire, B., Lehmann, H., Galbraith, P. Hemoglobin Winnipeg. Clin. Biochem. 6: 66-70, 1973. [PubMed: 4728965, related citations] [Full Text]

  387. Vettore, L., De Sandre, G., Di Iorio, E. E., Winterhalter, K. H., Lang, A., Lehmann, H. A new abnormal hemoglobin O Padova, alpha 30 (B11) glu-to-lys, and a dyserythropoietic anemia with erythroblastic multinuclearity coexisting in the same patient. Blood 44: 869-878, 1974. [PubMed: 4429803, related citations]

  388. Virshup, D. M., Zinkham, W. H., Hine, T., Baine, R. M., Jue, D. L., Moo-Penn, W. F. Hemoglobin Catonsville: an unstable, high affinity variant with an insertion of glutamic acid between residues 37(pro) and 38 (thr) in the alpha chain. (Abstract) Blood 72 (suppl.): 75a, 1988.

  389. Wainscoat, J. S., Higgs, D. R., Kanavakis, E., Cao, A., Georgiou, D., Clegg, J. B., Weatherall, D. J. Association of two DNA polymorphisms in the alpha-globin gene cluster: implications for genetic analysis. Am. J. Hum. Genet. 35: 1086-1089, 1983. [PubMed: 6316779, related citations]

  390. Wainscoat, J. S., Kanavakis, E., Weatherall, D. J., Walker, J., Holmes-Seidle, M., Bobrow, M., Donnison, A. B. Regional localisation of the human alpha-globin genes. (Letter) Lancet 318: 301-302, 1981. Note: Originally Volume II. [PubMed: 6114338, related citations] [Full Text]

  391. Wajcman, H., Belkhodja, O., Labie, D. Hb Setif: G1 (94) alpha--asp-to-tyr. A new chain hemoglobin variant with substitution of the residue involved in a hydrogen bond between unlike subunits. FEBS Lett. 27: 298-300, 1972. [PubMed: 4667378, related citations] [Full Text]

  392. Wajcman, H., Blouquit, Y., Gombaud-Saintonge, G., Riou, J., Galacteros, F. HB Fontainebleau (alpha21(B2)ala-to-pro), a new silent mutant hemoglobin. Hemoglobin 13: 421-429, 1989. [PubMed: 2599878, related citations] [Full Text]

  393. Wajcman, H., Blouquit, Y., Lahary, A., Soummer, A. M., Groff, P., Bardakdjian, J., Prehu, C., Riou, J., Godard, C., Galacteros, F. Three new neutral alpha chain variants: Hb Bois Guillaume (alpha-65(E14)ala-to-val), Hb Mantes-La-Jolie (alpha-79(EF8)ala-to-thr), and Hb Mosella (alpha-111(G18)ala-to-thr). Hemoglobin 19: 281-286, 1995. [PubMed: 8537232, related citations] [Full Text]

  394. Wajcman, H., Blouquit, Y., Riou, J., Kister, J., Poyart, C., Soria, J., Galacteros, F. A new hemoglobin variant found during investigations of diabetes mellitus: Hb Pavie [alpha-135(H18)val-to-glu]. Clin. Chim. Acta 188: 39-48, 1990. [PubMed: 2347082, related citations] [Full Text]

  395. Wajcman, H., Blouquit, Y., Vasseur, C., Le Querrec, A., Laniece, M., Melevendi, C., Rasore, A., Galacteros, F. Two new human hemoglobin variants caused by unusual mutational events: Hb Zaire contains a five residue repetition within the alpha-chain and Hb Duino has two residues substituted in the beta-chain. Hum. Genet. 89: 676-680, 1992. [PubMed: 1511986, related citations] [Full Text]

  396. Wajcman, H., Bost, M., Blouquit, Y., Prehu, C., Riou, J., Galacteros, F. Two new alpha chain variants found during glycated hemoglobin screening: Hb Tatras (alpha7(A5)lys-to-asn) and Hb Lisbon (alpha23(B4)glu-to-asp). Hemoglobin 18: 427-432, 1994. [PubMed: 7713746, related citations] [Full Text]

  397. Wajcman, H., Dahmane, M., Prehu, C., Costes, B., Prome, D., Arous, N., Bardakdjian-Michau, J., Riou, J., Ayache, K. C., Godart, C., Galacteros, F. Haemoglobin J-Biskra: a new mildly unstable alpha-1 gene variant with a deletion of eight residues (alpha-50-57, alpha-51-58 or alpha-52-59) including the distal histidine. Brit. J. Haemat. 100: 401-406, 1998. [PubMed: 9488635, related citations] [Full Text]

  398. Wajcman, H., Delaunay, J., Francina, A., Rosa, J., Galacteros, F. Hemoglobin Nouakchott [alpha114(GH2)pro-to-leu]: a new hemoglobin variant displaying an unusual increase in hydrophobicity. Biochim. Biophys. Acta 998: 25-31, 1989. [PubMed: 2790052, related citations] [Full Text]

  399. Wajcman, H., Elion, J., Boissel, J. P., Labie, D., Jos, J., Girot, R. A silent hemoglobin variant: hemoglobin Necker Enfants-Malades alpha 20 (B1) his-to-tyr. Hemoglobin 4: 177-184, 1980. [PubMed: 7390863, related citations] [Full Text]

  400. Wajcman, H., Gombaud-Saintonge, G., Galacteros, F., Martha, M., Vertongen, F. Hb Belliard (alpha56 (E5) lys-to-asn): a new fast-moving alpha chain variant found in a subject of Spanish origin. Hemoglobin 13: 157-162, 1990. [PubMed: 4667378, related citations] [Full Text]

  401. Wajcman, H., Kister, J., Galacteros, F., Josifovska, O., Spielvogel, A., Nagel, R.L. Hb Montefiore [alpha126 (H9) asp-to-tyr]: an abnormal hemoglobin with high oxygen affinity and absence of cooperativity.. (Abstract) Blood 80 (suppl. 1): 82a, 1992.

  402. Wajcman, H., Kister, J., M'Rad, A., Marden, M. C., Riou, J., Galacteros, F. Hb Val de Marne [alpha133 (H16) ser-to-arg]: a new hemoglobin variant with moderate increase in oxygen affinity.. Hemoglobin 17: 407-417, 1993. [PubMed: 8294200, related citations] [Full Text]

  403. Wajcman, H., Kister, J., M'Rad, A., Soummer, A. M., Galacteros, F. Hb Cemenelum [alpha92 (FG4) arg-to-trp]: a hemoglobin variant of the alpha-1/beta-2 interface that displays a moderate increase in oxygen affinity. Ann. Hemat. 68: 73-76, 1994. [PubMed: 8148419, related citations] [Full Text]

  404. Wajcman, H., Kister, J., Marden, M., Lahary, A., Monconduit, M., Galacteros, F. Hemoglobin Rouen (alpha140(HC2)tyr-to-his): alteration of the alpha chain C-terminal region and moderate increase in oxygen affinity. Biochim. Biophys. Acta 1180: 53-57, 1992. [PubMed: 1390944, related citations] [Full Text]

  405. Wajcman, H., Kister, J., Riou, J., Galacteros, F., Girot, R., Maier-Redelsperger, M., Nayudu, N. V. S., Giordano, P. C. Hb Godavari (alpha-95(G2)pro to thr): a neutral amino acid substitution in the alpha-1/beta-2 interface that modifies the electrophoretic mobility of hemoglobin. Hemoglobin 22: 11-22, 1998. [PubMed: 9494044, related citations] [Full Text]

  406. Wajcman, H., Vasseur, C., Blouquit, Y., Rosa, J., Labie, D., Najman, A., Reman, O., Leporrier, M., Galacteros, F. Unstable alpha-chain hemoglobin variants with factitious beta-thalassemia biosynthetic ratio: Hb Questembert (alpha131 [H14] ser-to-pro) and Hb Caen (alpha132 [H15] val-to-gly). Am. J. Hemat. 42: 367-374, 1993. [PubMed: 8493987, related citations] [Full Text]

  407. Wajcman, H., Vasseur, C., Galacteros, F., Blouquit, Y., Rosa, J., Labie, D., Najman, A. Hb Questembert [alpha-131(H14)ser-to-pro]: a new highly unstable variant with unbalanced chain synthesis. (Abstract) Blood 76 (suppl. 1): 79a, 1990.

  408. Waye, J. S., Eng, B., Patterson, M., Carcao, M. D., Chang, L., Olivieri, N. F., Chui, D. H. K. Identification of two new alpha-thalassemia mutations in exon 2 of the alpha-1-globin gene. Hemoglobin 25: 391-396, 2001. [PubMed: 11791872, related citations] [Full Text]

  409. Weatherall, D. J., Clegg, J. B. Recent developments in the molecular genetics of human hemoglobin. Cell 16: 467-479, 1979. [PubMed: 378393, related citations] [Full Text]

  410. Webber, B. B., Lam, H., Wilson, J. B., Huisman, T. H. J. Hb Albany-GA or alpha11(A9)lys-to-asn. Hemoglobin 7: 257-262, 1983. [PubMed: 6860428, related citations] [Full Text]

  411. Webber, B. B., Wilson, J. B., Gu, L.-H., Huisman, T. H. J. Hb Ethiopia or alpha140(HC2)tyr-to-his. Hemoglobin 16: 441-443, 1992. [PubMed: 1428951, related citations] [Full Text]

  412. Weitkamp, L. R., Stamatoyannopoulos, G., Rowley, P. T., Kirk, R. L. The linkage relationships of the haemoglobin beta, delta and alpha loci with 34 genetic marker systems. Ann. Hum. Genet. 41: 61-75, 1977. [PubMed: 921219, related citations] [Full Text]

  413. Wilkie, A. O. M., Higgs, D. R., Rack, K. A., Buckle, V. J., Spurr, N. K., Fischel-Ghodsian, N., Ceccherini, I., Brown, W. R. A., Harris, P. C. Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64: 595-606, 1991. [PubMed: 1991321, related citations] [Full Text]

  414. Williamson, D., Langdown, J. V., Myles, T., Mason, C., Henthorn, J. S., Davies, S. C. Polycythaemia and microcytosis arising from the combination of a new high oxygen affinity haemoglobin (Hb Luton, alpha-89 his-to-leu) and alpha-thalassaemia trait. Brit. J. Haemat. 82: 621-622, 1992. [PubMed: 1486044, related citations] [Full Text]

  415. Wilson, J. T., deRiel, J. K., Forget, B. G., Marotta, C. A., Weissman, S. M. Nucleotide sequence of 3-prime untranslated portion of human alpha globin mRNA. Nucleic Acids Res. 4: 2353-2368, 1977. [PubMed: 909779, related citations] [Full Text]

  416. Wiltshire, B. G., Clark, K. G. A., Lorkin, P. A., Lehmann, H. Haemoglobin Denmark Hill (alpha 95 (G2) pro-to-ala), a variant with unusual electrophoretic and oxygen-binding properties. Biochim. Biophys. Acta 278: 459-464, 1972. [PubMed: 5085669, related citations] [Full Text]

  417. Winter, W. P., Rucknagel, D. L., Fielding, J. Identification of several rare hemoglobin variants discovered in a population survey including a new variant Hb Garden State alpha-82 ala-to-asp. (Abstract) Clin. Res. 26: 122A, 1978.

  418. Wong, S. C., Ali, M. A. M., Pond, J. R., Rubin, S. M., Johnson, S. E. N., Wilson, J. B., Huisman, T. H. J. Hb J-Singa (alpha-78 asn-to-asp), a newly discovered hemoglobin variant with the same amino acid substitution as one of the two present in Hb J-Singapore (alpha-78 asn-to-asp, alpha-79 ala-to-gly). Biochim. Biophys. Acta 784: 187-188, 1984. [PubMed: 6691995, related citations] [Full Text]

  419. Yamaoka, K., Kawamura, K., Hanada, M., Seita, M., Hitsumoto, S., Ooya, I. Studies on abnormal haemoglobins. Jpn. J. Hum. Genet. 5: 99-111, 1960.

  420. Yanase, T., Hanada, M., Seita, M., Ohya, I., Ohta, Y., Imamura, T., Fujimura, T., Kawasaki, K., Yamaoka, K. Molecular basis of morbidity from a series of studies of hemoglobinopathies in western Japan. Jpn. J. Hum. Genet. 13: 40-53, 1968. [PubMed: 5750181, related citations]

  421. Yi, C. H., Li, H. J., Li, H. W., Zhang, X. S., Zhao, X. N., Zhang, C. T. Hemoglobin Shenyang found among Uygurs in P.R. China. Hemoglobin 13: 97-99, 1989. [PubMed: 2703370, related citations] [Full Text]

  422. Yi-Tao, Z., Headlee, M. E., Henson, J., Lam, H., Wilson, J. B., Huisman, T. H. J. Identification of hemoglobin G-Philadelphia (alpha68 asn-to-lys) and hemoglobin Matsue-Oki (alpha75 asp-to-asn) in a black infant. Biochim. Biophys. Acta 707: 206-212, 1982. [PubMed: 6814490, related citations] [Full Text]

  423. Yodsowan, B., Svasti, J., Srisomsap, C., Winichagoon, P., Fucharoen, S. Hb Siam [alpha-15(A13)gly-arg] is a GGT-CGT mutation in the alpha-1-globin gene. Hemoglobin 24: 71-75, 2000. [PubMed: 10722119, related citations] [Full Text]

  424. Yongsuwan, S., Svasti, J., Fucharoen, S. Decreased heat stability found in purified hemoglobin Queens (alpha34(B15)leu-to-arg). Hemoglobin 11: 567-570, 1987. [PubMed: 3446653, related citations] [Full Text]

  425. Zeng, F.-Y., Fucharoen, S., Huang, S.-Z., Rodgers, G. P. Hb Q-Thailand (alpha74 (EF3) asp-to-his): gene organization, molecular structure, and DNA diagnosis. Hemoglobin 16: 481-491, 1992. [PubMed: 1487419, related citations] [Full Text]

  426. Zeng, Y., Huang, S., Liang, X., Long, G., Lam, H., Wilson, J. B., Huisman, T. H. J. Hb Wuming or alpha11 (A9) lys-to-gln. Hemoglobin 5: 679-687, 1981. [PubMed: 7338470, related citations] [Full Text]

  427. Zeng, Y., Huang, S., Qiu, X., Cheng, G., Ren, Z., Jin, Q., Chen, C., Jiao, C., Tang, Z., Liu, R., Bao, X., Zeng, L., Duan, Y., Zhang, G. Hemoglobin Chongqing (alpha2 (NA2) leu-to-arg) and hemoglobin Harbin (alpha16 (A14) lys-to-met) found in China. Hemoglobin 8: 569-581, 1984. [PubMed: 6526652, related citations] [Full Text]

  428. Zeng, Y., Huang, S., Zhou, X., Qiu, X., Dong, Q., Li, M., Bai, J. Hb Shenyang (alpha26 (B7) ala-to-glu): a new unstable variant found in China. Hemoglobin 6: 625-628, 1982. [PubMed: 7161109, related citations]

  429. Zhao, W., Wilson, J. B., Webber, B. B., Kutlar, A., Tamagnini, G. P., Kuam, B., Huisman, T. H. J. Hb Hekinan observed in three Chinese from Macau: identification of the GAG-to-GAT mutation in the alpha-1-globin gene. Hemoglobin 14: 627-635, 1990. [PubMed: 1983218, related citations] [Full Text]

  430. Zhou, Z., Chen, L., Chen, P., Zhang, K., Wang, Y. Hemoglobin Hangzhou alpha64 (E13) asp-to-gly: a new variant found in China. Hemoglobin 11: 31-33, 1987. [PubMed: 3583763, related citations] [Full Text]

  431. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W., Wilson, A. C. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc. Nat. Acad. Sci. 77: 2158-2162, 1980. [PubMed: 6929543, related citations] [Full Text]

  432. Zwerdling, T., Williams, S., Nasr, S. A., Rucknagel, D. L. Hb Port Huron (alpha56(E5)lys-to-arg): a new alpha chain variant. Hemoglobin 15: 381-391, 1991. [PubMed: 1802882, related citations] [Full Text]


Ada Hamosh - updated : 12/14/2012
Ada Hamosh - updated : 11/1/2012
Patricia A. Hartz - updated : 1/28/2010
Carol A. Bocchini - updated : 5/22/2009
Victor A. McKusick - updated : 9/19/2006
Ada Hamosh - updated : 7/21/2006
Victor A. McKusick - updated : 3/29/2006
Victor A. McKusick - updated : 10/11/2005
Victor A. McKusick - updated : 8/11/2005
Victor A. McKusick - updated : 5/11/2005
Victor A. McKusick - updated : 12/6/2004
Victor A. McKusick - updated : 8/6/2004
Victor A. McKusick - updated : 6/2/2004
Victor A. McKusick - updated : 1/20/2004
Victor A. McKusick - updated : 1/15/2004
Victor A. McKusick - updated : 9/2/2003
Victor A. McKusick - updated : 3/5/2003
Victor A. McKusick - updated : 10/2/2002
Victor A. McKusick - updated : 6/3/2002
Victor A. McKusick - updated : 5/23/2002
Victor A. McKusick - updated : 2/27/2002
Victor A. McKusick - updated : 11/1/2001
Victor A. McKusick - updated : 10/11/2001
Victor A. McKusick - updated : 5/1/2000
Victor A. McKusick - updated : 1/19/2000
Victor A. McKusick - updated : 7/14/1999
Ada Hamosh - updated : 4/21/1999
Victor A. McKusick - updated : 2/24/1999
Victor A. McKusick - updated : 2/9/1999
Ada Hamosh - updated : 6/12/1998
Victor A. McKusick - updated : 4/30/1998
Victor A. McKusick - updated : 2/6/1998
Victor A. McKusick - updated : 8/27/1997
Creation Date:
Victor A. McKusick : 6/23/1986
alopez : 09/15/2023
carol : 09/01/2023
carol : 08/15/2023
carol : 09/12/2022
carol : 11/01/2019
carol : 05/21/2018
carol : 05/10/2018
joanna : 07/20/2016
carol : 07/19/2016
carol : 07/15/2016
carol : 7/14/2016
carol : 7/14/2016
carol : 7/12/2016
joanna : 7/11/2016
carol : 1/21/2016
carol : 2/23/2015
carol : 9/12/2014
tpirozzi : 9/30/2013
alopez : 12/19/2012
terry : 12/14/2012
alopez : 11/2/2012
terry : 11/1/2012
alopez : 8/6/2012
alopez : 7/25/2011
carol : 6/9/2011
alopez : 5/13/2011
alopez : 1/28/2010
terry : 6/3/2009
carol : 5/22/2009
terry : 1/15/2009
terry : 1/15/2009
terry : 1/14/2009
wwang : 10/4/2007
wwang : 10/3/2006
terry : 9/19/2006
alopez : 7/25/2006
terry : 7/21/2006
terry : 6/23/2006
terry : 3/29/2006
carol : 10/21/2005
wwang : 10/21/2005
terry : 10/11/2005
carol : 10/3/2005
terry : 8/11/2005
wwang : 6/7/2005
terry : 5/17/2005
terry : 5/17/2005
wwang : 5/13/2005
terry : 5/11/2005
terry : 2/7/2005
tkritzer : 1/25/2005
terry : 12/6/2004
tkritzer : 8/10/2004
terry : 8/6/2004
tkritzer : 6/8/2004
terry : 6/2/2004
carol : 3/17/2004
tkritzer : 1/21/2004
terry : 1/20/2004
terry : 1/15/2004
cwells : 9/3/2003
terry : 9/2/2003
carol : 8/29/2003
carol : 8/25/2003
carol : 5/13/2003
terry : 4/17/2003
terry : 3/5/2003
terry : 3/3/2003
tkritzer : 12/10/2002
tkritzer : 10/7/2002
tkritzer : 10/3/2002
tkritzer : 10/2/2002
carol : 6/3/2002
terry : 6/3/2002
terry : 5/23/2002
cwells : 3/22/2002
cwells : 3/20/2002
terry : 2/27/2002
mcapotos : 11/1/2001
mcapotos : 10/26/2001
mcapotos : 10/11/2001
cwells : 5/31/2001
mcapotos : 2/19/2001
mcapotos : 2/15/2001
terry : 2/14/2001
mcapotos : 5/26/2000
mcapotos : 5/24/2000
terry : 5/1/2000
mcapotos : 2/7/2000
mcapotos : 2/4/2000
carol : 1/28/2000
mcapotos : 1/28/2000
mcapotos : 1/24/2000
terry : 1/19/2000
carol : 12/8/1999
mgross : 7/16/1999
terry : 7/14/1999
carol : 6/27/1999
terry : 4/30/1999
alopez : 4/21/1999
terry : 3/24/1999
carol : 3/9/1999
terry : 2/24/1999
mgross : 2/16/1999
mgross : 2/11/1999
terry : 2/9/1999
dkim : 7/21/1998
dkim : 7/21/1998
carol : 7/2/1998
alopez : 6/12/1998
terry : 6/5/1998
terry : 6/5/1998
alopez : 5/14/1998
carol : 5/4/1998
terry : 4/30/1998
mark : 2/16/1998
terry : 2/6/1998
terry : 2/6/1998
mark : 10/19/1997
jenny : 9/5/1997
terry : 8/27/1997
alopez : 7/31/1997
alopez : 7/29/1997
terry : 7/10/1997
mark : 7/10/1997
alopez : 7/10/1997
terry : 7/9/1997
terry : 7/7/1997
mark : 6/14/1997
terry : 11/15/1996
terry : 11/13/1996
mark : 4/12/1996
terry : 4/9/1996
mark : 2/13/1996
terry : 2/5/1996
mark : 11/17/1995
terry : 11/18/1994
jason : 7/29/1994
pfoster : 4/25/1994
mimadm : 4/17/1994
warfield : 4/8/1994

* 141800

HEMOGLOBIN--ALPHA LOCUS 1; HBA1


Alternative titles; symbols

3-PRIME ALPHA-GLOBIN GENE
MINOR ALPHA-GLOBIN LOCUS


HGNC Approved Gene Symbol: HBA1

SNOMEDCT: 36467003, 68913001, 74405003;   ICD10CM: D56.0;   ICD9CM: 282.43;  


Cytogenetic location: 16p13.3     Genomic coordinates (GRCh38): 16:176,680-177,522 (from NCBI)


Gene-Phenotype Relationships

Location Phenotype Phenotype
MIM number
Inheritance Phenotype
mapping key
16p13.3 Erythrocytosis, familial, 7 617981 Autosomal dominant 3
Heinz body anemias, alpha- 140700 Autosomal dominant 3
Hemoglobin H disease, nondeletional 613978 3
Methemoglobinemia, alpha type 617973 Autosomal dominant 3
Thalassemias, alpha- 604131 3

TEXT

Description

The alpha and beta loci determine the structure of the 2 types of polypeptide chains in the tetrameric adult hemoglobin, Hb A, alpha-2/beta-2. The alpha locus also determines a polypeptide chain, the alpha chain, in fetal hemoglobin (alpha-2/gamma-2), in hemoglobin A2(alpha-2/delta-2), and in embryonic hemoglobin (alpha-2/epsilon-2). The number of normal alpha genes (3, 2, 1 or none) in Asian cases of alpha-thalassemia (604131) results in 4 different alpha-thalassemia syndromes (Kan et al., 1976). Three normal alpha genes gives a silent carrier state. Two normal alpha genes results in microcytosis (so-called heterozygous alpha-thalassemia). One normal alpha gene results in microcytosis and hemolysis (so-called Hb H disease, 613978). No normal alpha gene results in 'homozygous alpha-thalassemia' manifested as fatal hydrops fetalis.

The alpha chain of human hemoglobin contains 141 amino acids (Konigsberg et al., 1961).


Mapping

By studies of somatic cell hybrids, Deisseroth et al. (1976) showed that the alpha and beta loci are on different chromosomes.

Deisseroth et al. (1977) combined the methods of somatic cell hybridization and DNA-cDNA hybridization to establish assignment of the alpha-globin locus to chromosome 16. This represents an extension of the cell hybridization method permitting mapping of genes that are not functional in the cultured cell. Deisseroth and Hendrick (1978) confirmed the assignment of the alpha locus to chromosome 16 by means of cotransfer of this gene with the human APRT gene, known to be on 16 (see 102600), into mouse erythroleukemia cells. (The APRT gene is on the long arm of chromosome 16.)

Weitkamp et al. (1977) presented data concerning linkage of the alpha and beta loci to 34 marker loci. Data on alpha-thalassemia, combined with those on the Hopkins-2 variant, excluded linkage of alpha and haptoglobin (140100) at a recombination fraction less than 0.15.

On the basis of findings in a case of partial trisomy 16, Wainscoat et al. (1981) concluded that the alpha-globin genes are on segment 16pter-p12. By combining somatic cell hybridization with a cDNA probe in the study of a cell line with reciprocal translocation between 16q and 11q, Koeffler et al. (1981) showed that the alpha-globin genes are on the short arm of 16. Gerhard et al. (1981) used an improved method of in situ hybridization to confirm the assignment of the alpha-globin cluster to chromosome 16p.

On the basis of the findings in a fetus with an unbalanced translocation involving 16p, Breuning et al. (1987) concluded that the HBA cluster is distal to PGP (172280).

By a combination of in situ hybridization, Southern blot analysis, and linkage analysis using the fragile site 16p12.3 and translocation breakpoints within band 16p13.1, Simmers et al. (1987) mapped the alpha-globin gene complex to 16pter-p13.2.


Cytogenetics

Buckle et al. (1988) described a child in whom cytogenetic analysis indicated monosomy for 16pter-p13.3. DNA studies showed that the patient had not inherited either maternal alpha-globin allele. The child had the alpha-thalassemia trait as well as moderate mental retardation and dysmorphic features. They determined that the gene is located in the 16pter-p13.3 segment. After reviewing earlier data placing the alpha-globin cluster slightly more proximal, they concluded that the findings in this child may be more reliable.


Gene Structure

Orkin (1978) identified alpha-globin gene fragments in restriction endonuclease digests of total DNA after electrophoresis by hybridization with P32-labeled cDNA probes. The data indicated that the alpha genes occur in duplicate and that the 2 copies lie close together. Thus direct physical evidence was provided for the duplication deduced from the findings with mutant alpha chains and with the alpha-thalassemias and the kinetics of hybridization in solution. The 2 alpha chains lie about 3.7 kilobases apart.

Leder et al. (1978) presented evidence that the alpha and beta genes of all adult mammalian hemoglobins have 2 intervening sequences at analogous positions.


Gene Function

Straub et al. (2012) reported a model for the regulation of nitric oxide (NO) signaling by demonstrating that hemoglobin alpha, encoded by the HBA1 and HBA2 (141850) genes, is expressed in human and mouse arterial endothelial cells and enriched at the myoendothelial junction, where it regulates the effects of NO on vascular reactivity. Notably, this function is unique to hemoglobin alpha and is abrogated by its genetic depletion. Mechanistically, endothelial hemoglobin alpha heme iron in the Fe(3+) state permits NO signaling, and this signaling is shut off when hemoglobin alpha is reduced to the Fe(2+) state by endothelial cytochrome b5 reductase 3 (CYB5R3; 613213). Genetic and pharmacologic inhibition of CYB5R3 increased NO bioactivity in small arteries. Straub et al. (2012) concluded that their data revealed a mechanism by which the regulation of the intracellular hemoglobin alpha oxidation state controls nitric oxide synthase (NOS; see 163729) signaling in nonerythroid cells. The authors suggested that this model may be relevant to heme-containing globins in a broad range of NOS-containing somatic cells.


Biochemical Features

Crystal Structure

Andersen et al. (2012) presented the crystal structure of the dimeric porcine haptoglobin (140100)-hemoglobin complex determined at 2.9-angstrom resolution. This structure revealed that haptoglobin molecules dimerize through an unexpected beta-strand swap between 2 complement control protein (CCP) domains, defining a new fusion CCP domain structure. The haptoglobin serine protease domain forms extensive interactions with both the alpha- and beta-subunits of hemoglobin, explaining the tight binding between haptoglobin and hemoglobin. The hemoglobin-interacting region in the alpha-beta dimer is highly overlapping with the interface between the 2 alpha-beta dimers that constitute the native hemoglobin tetramer. Several hemoglobin residues prone to oxidative modification after exposure to heme-induced reactive oxygen species are buried in the haptoglobin-hemoglobin interface, thus showing a direct protective role of haptoglobin. The haptoglobin loop previously shown to be essential for binding of haptoglobin-hemoglobin to the macrophage scavenger receptor CD163 (605545) protrudes from the surface of the distal end of the complex, adjacent to the associated hemoglobin alpha-subunit. Small-angle x-ray scattering measurements of human haptoglobin-hemoglobin bound to the ligand-binding fragment of CD163 confirmed receptor binding in this area, and showed that the rigid dimeric complex can bind 2 receptors.


Molecular Genetics

Wilson et al. (1977) described a possible nucleotide polymorphism in the untranslated 3-prime region of the alpha-globin gene and suggested that the heterogeneity is related to the existence of 2 alpha gene loci.

Musumeci et al. (1978) pointed out that the combination of alpha-thalassemia and beta-thalassemia leads to less severe clinical expression of homozygous beta-thalassemia. The rarity of a chromosome 16 with both alpha loci deleted (as demonstrated by the restriction endonuclease mapping technique of Southern) explains the rarity of severe forms of alpha-thalassemia in Africans, e.g., Hb H disease, which requires loss of 3 alpha loci and homozygous alpha-thalassemia which requires loss of 4 alpha loci (Dozy et al., 1979).

By restriction endonuclease mapping, Goossens et al. (1980) identified 12 persons heterozygous for a chromosome carrying 3 alpha genes. There were no hematologic abnormalities. The frequency was 0.0036 in American Blacks and 0.05 in Greek Cypriots. They had previously shown a frequency of 0.16 for the single alpha-globin locus in black Americans. The single locus had a frequency of 0.18 in Sardinians, but none of 125 Sardinians had a triple alpha locus, suggesting that the former had a selective advantage. Greek Cypriots have a frequency of 0.07 for the single alpha locus. Among 645 Japanese subjects studied, Nakashima et al. (1990) found 10 persons heterozygous for a chromosome with the triplicated alpha-globin locus. Thus, the frequency of the triplicate alpha locus was 0.008 in this population, while that of the single alpha-locus, i.e., the alpha-thalassemia-2 gene, may be lower than 0.0008. Analysis of haplotypes suggested that the triple alpha loci may have had multiple origins. Nakashima et al. (1990) commented on the fact that in Melanesia the frequency of the triplicated genotype is about the same (Flint et al., 1986) as in Japan, whereas the frequency of the single alpha gene is much higher, compatible with a selective advantage vis-a-vis malaria. Liebhaber et al. (1981) found identity of the alpha-1-globin genes from an Asian and a Caucasian. Furthermore, the alpha-1 and alpha-2 genes have a much higher degree of homology than would be predicted from the timing of the duplication before the bird-mammal divergence (about 300 Myr ago). Liebhaber et al. (1981) presented this as evidence for the existence of mechanisms for suppression of allelic polymorphisms and for exchange of genetic information within the alpha-globin gene complex. See 142200 for a discussion of gene conversion in relation to a comparably surprising homology of the 2 gamma-globin genes.

Lehmann and Carrell (1984) suggested the use of the following nomenclature for alpha-thalassemias based on the number of alpha-globin genes that are missing or abnormal: 1-alpha-thalassemia (silent type); 2-alpha-thalassemia, trans or cis (thalassemia trait); 3-alpha-thalassemia (Hb H disease); and 4-alpha-thalassemia (Hb Bart hydrops fetalis). In this scheme, homozygous Hb Constant Spring is a 2-alpha-thalassemia which, if combined with a cis 2-alpha-thalassemia heterozygous Hb Constant Spring, gives a 3-alpha-thalassemia and results in Hb H disease. Lehmann and Carrell (1984) also proposed that the 2 alpha-globin genes be designated as 5-prime (now alpha-2) and 3-prime (now alpha-1). Liebhaber and Cash (1985) described a method for identifying whether the alpha-1 or alpha-2 locus is the site of particular alpha-globin mutations. Rubin and Kan (1985) described a sensitive method for determining how many alpha-globin genes are present. It had the advantages of not requiring restriction enzyme digestion and gel electrophoresis and using the much more stable isotope (35)S rather than 32(P) for labeling. Only a small sample of DNA is needed. Application of the approach to diagnosis of Down syndrome was proposed. Assum et al. (1985) added a fourth restriction site polymorphism in the alpha-globin gene cluster. Compared to the beta-globin cluster, the alpha-globin cluster seemed to show a poverty of DNA polymorphism; however, Higgs et al. (1986) demonstrated a remarkable degree of DNA polymorphism in the alpha-globin gene cluster. In addition, the RFLP haplotype is associated with hypervariable regions of DNA.

Pseudo-alpha-1 (HBAP1), a pseudogene, is defective in several respects, including splice junction mutations and premature termination codons. Hardison et al. (1986) identified a previously undetected pseudogene in the alpha-globin cluster. It was not detected by hybridization studies but was found only on sequence analysis. Hardison et al. (1986) suggested that 'divergent copies of a large number of genes may comprise a substantial fraction of the slowly renaturing DNA of mammalian genomes.' The newly detected pseudogene, which will be symbolized HBAP2, is only 65 bp 3-prime to the polyadenylation site of zeta-1 (HBZP). The sequence is: 5-prime--HBZ--HBZP--HBAP2--HBA2--HBA1--3-prime. (The functional Hba gene of the mouse is on chromosome 11, but pseudogenes are dispersed to other chromosomes (e.g., Hba-ps3 to mouse chromosome 15) (Popp et al., 1981; Leder et al., 1981; Eicher and Lee, 1991).)

Vandenplas et al. (1987) described a new form of alpha-0 thalassemia in a South African family ascertained through a case of Hb H disease. A novel deletion of 22.8-23.7 kb of DNA removed 3 pseudogenes as well as the alpha-2 and alpha-1 genes. Since the alpha-2-globin gene encodes the majority of alpha-globin, a thalassemic mutation of the alpha-1-globin gene would be expected to result in a less severe loss of alpha-chain synthesis.

Moi et al. (1987) described an initiation codon mutation, AUG-to-GUG, in the alpha-1-globin gene. As predicted, the degree of interference with alpha-globin synthesis was less in this mutation than in the mutation in the initiation codon of the alpha-2-globin gene (see 141850).

Hill et al. (1987) described a unique nondeletion form of Hb H disease in Papua New Guinea: all 4 alpha genes were intact. Hill et al. (1987) commented on the striking difference in the hemoglobinopathies that occur in Southeast Asia and in Melanesia. In the former area, Hb E, Hb Constant Spring, and the Southeast Asian form of deletion alpha-0-thalassemia are all common, whereas these forms have never been found in Melanesians or Polynesians.

Jarman and Higgs (1988) identified a highly polymorphic region approximately 100 kb upstream of the alpha-globin genes and referred to it as 5-prime HVR. This is a valuable genetic marker for 16p. Higgs et al. (1989) gave a comprehensive review of the molecular genetics of the alpha-globin gene cluster, including its diseases.

Hatton et al. (1990) presented evidence for the existence of an alpha-locus control region (LCRA; 152422). This would be comparable to the beta-LCR which controls expression of the beta-like genes; see 152424. Liebhaber et al. (1990) identified an individual with alpha-thalassemia in whom structurally normal alpha-globin genes were inactivated in cis by a discrete de novo 35-kb deletion located about 30 kb 5-prime to the alpha-globin gene cluster. They concluded that the deletion inactivates expression of the alpha-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the alpha-globin genes.

Hemoglobinopathies of alpha-globin can result from missense mutations at either of the 2 alpha-globin loci, HBA1 or HBA2. Since the normal HBA1 and HBA2 genes encode an identical alpha globin, these mutants cannot be assigned to their specific loci on the basis of protein structural analysis. A clue to the encoding locus, HBA1 versus HBA2, is provided by the relative concentration of the alpha-globin mutant in the erythrocyte based on the 2- to 3-fold higher level of expression of the HBA2 gene (Liebhaber et al., 1986). However, since variables such as protein stability, efficiency of hemoglobin tetramer formation, and other factors can affect the steady-state levels of globin mutants, a definitive locus assignment must be directly determined. Cash et al. (1989) quantitated the expression of 2 alpha-globin structural mutants found in the Caribbean basin, Fort de France and Spanish Town, and showed that they are HBA1 and HBA2 mutants, respectively, on the basis of low or high expression.

Wilkie et al. (1991) described major polymorphic length variation in the terminal region of 16p (16p13.3) by physically linking the alpha-globin locus with probes to telomere-associated repeats. They found 3 alleles in which the alpha-globin genes lie 170 kb, 350 kb, or 430 kb from the telomere. The 2 most common alleles were found to contain different terminal segments, starting 145 kb distal to the alpha-globin genes. Beyond this boundary these alleles are nonhomologous, yet each contains sequences related to other, different chromosome termini. This chromosome-size polymorphism probably arose by occasional exchanges between the subtelomeric regions of nonhomologous chromosomes. Wilkie et al. (1991) raised the possibility that the high frequency of trisomy 16 may be related to this nonhomology of the 2 common 16pter alleles in their subtelomeric region.

Huisman et al. (1996) found that of the 141 codons of the alpha-globin genes (there are no sequence differences between the coding regions of the alpha-2 and alpha-1 genes), as many as 99 have been found to be mutated; for several, 3 or 4 mutations have been discovered, while 5 mutations are known for codons 23, 75, and 94, and 6 for codon 141. The mutations appear to occur at random; thus, either one of the 3 bases are replaced in the 199 known alpha-globin gene mutants.

The suggestion that alpha(+)-thalassemia has achieved a high frequency in some populations as a result of selection by malaria is based on a number of epidemiologic studies. In the southwest Pacific region, there is a striking geographic correlation between the frequency of alpha(+)-thalassemia and the endemicity of Plasmodium falciparum. Allen et al. (1997) undertook a prospective case-control study of children with severe malaria on the north coast of Papua New Guinea, where malaria transmission is intense and alpha(+)-thalassemia affects more than 90% of the population (homozygotes comprise approximately 55% and heterozygotes 37% of the population). Compared with normal children, the risk of having severe malaria was 0.40 in alpha(+)-thalassemia homozygotes and 0.66 in heterozygotes. Unexpectedly, the risk of hospital admission with infections other than malaria also was reduced to a similar degree in homozygotes (0.36) and heterozygotes (0.63). This clinical study demonstrated that a malaria resistance gene protects against disease caused by infections other than malaria. A reduction in mortality greater than that attributable directly to malaria had been observed after the prevention of malaria by insecticides, chemoprophylaxis, and insecticide-impregnated bed nets. Previous observations that direct malaria mortality cannot account for observed hemoglobin S gene frequencies suggest that the findings of this study may apply equally to other malaria resistance genes.

Fung et al. (1999) reported 3 cases of homozygous alpha-thalassemia who survived beyond the newborn period, all with hypospadias. Review of the literature identified 2 additional cases. Fung et al. (1999) suggested that the hypospadias may have been secondary to the in utero edema leading to failure of fusion of urogenital folds or due to defect or deletion of another gene at 16p13.3.

For a review of hydrops fetalis caused by alpha-thalassemia, see Chui and Waye (1998).

From work on the mouse model of alpha-thalassemia, Leder et al. (1999) demonstrated that a normal beta-globin allele can act as a modifying gene ameliorating the severity of alpha-thalassemia. They found that the phenotype of alpha-thalassemia was strongly influenced by the genetic background in which the mutation resided; when both mutant genes were on a chromosome derived from strain 129, the phenotype was severe, whereas it was mild when the gene was on a 129 chromosome and a C57BL/6 chromosome. Linkage mapping indicated that the modifying gene is very tightly linked to the beta-globin locus (lod score = 13.3). Furthermore, the severity of the phenotype correlated with the size of beta-globin-containing inclusion bodies, which accumulate in red blood cells and likely accelerate their destruction. The beta-major globin chains encoded by the 2 strains differed by 3 amino acids, one of which is a glycine-to-cysteine substitution at position 13. The cys13 should be available for interchain disulfide bridging and consequent aggregation between excess beta chains. This normal polymorphic variation between murine beta-globin chains could account for the modifying action of the unlinked beta-globin locus. Here, the variation in severity of the phenotype would not depend on a change in the ratio between alpha and beta chains but on the chemical nature of the normal beta chain, which is in excess. This work also indicated that modifying genes can be normal variants that, absent an apparent physiologic rationale, may be difficult to identify on the basis of structure alone.

De Gobbi et al. (2006) identified a pathogenetic mechanism underlying a variant form of the inherited blood disorder alpha-thalassemia. Association studies of affected individuals from Melanesia localized the disease trait to the telomeric region of human chromosome 16, which includes the alpha-globin gene cluster, but no molecular defects were detected by conventional approaches. After resequencing and using a combination of chromatin immunoprecipitation and expression analysis on a tiled oligonucleotide array, De Gobbi et al. (2006) identified a gain-of-function regulatory single-nucleotide polymorphism (rSNP) (141800.0218) in a nongenic region between the alpha-globin genes and their upstream regulatory elements. The rSNP creates a new promoter-like element that interferes with normal activation of all downstream alpha-like globin genes. De Gobbi et al. (2006) concluded that their work illustrates a strategy for distinguishing between neutral and functionally important rSNPs, and it also identifies a pathogenetic mechanism that could potentially underlie other genetic diseases.

Schoenfelder et al. (2010) found that mouse Hbb and Hba associated with hundreds of active genes from nearly all chromosomes in nuclear foci that they called 'transcription factories.' The 2 globin genes preferentially associated with a specific and partially overlapping subset of active genes. Schoenfelder et al. (2010) also noted that expression of the Hbb locus is dependent upon Klf1 (600599), while expression of the Hba locus is only partially dependent on Klf1. Immunofluorescence analysis of mouse erythroid cells showed that most Klf1 localized to the cytoplasm and that nuclear Klf1 was present in discrete sites that overlapped with RNAII foci. Klf1 knockout in mouse erythroid cells specifically disrupted the association of Klf1-regulated genes within the Hbb-associated network. Klf1 knockout more weakly disrupted interactions within the specific Hba network. Schoenfelder et al. (2010) concluded that transcriptional regulation involves a complex 3-dimensional network rather than factors acting on single genes in isolation.

N.B.: Alpha-globin variants for which it is unknown whether HBA1 or HBA2 is involved have arbitrarily been included in this entry. Carver and Kutlar (1995) listed 191 alpha-globin variants as of January 1995. The syllabus by Huisman et al. (1996) listed 199 alpha-chain hemoglobin variants as of January 1996. These included single-base mutations in the alpha-2 and alpha-1 genes as well as 2-base mutations. Not included in their syllabus were deletions in mutations that result in alpha-thalassemia, even if such a change (point mutation or frameshift) occurred in one of the coding regions of the gene. Information about the alpha-thalassemias was provided by Higgs et al. (1989).


History

Gandini et al. (1977) concluded, incorrectly as it turned out, that the alpha loci are on the long arm of chromosome 4 (4q28-q34). The conclusion was based on a finding of excessive synthesis of alpha chains in patients with duplication of this region.


ALLELIC VARIANTS 221 Selected Examples):

.0001   HEMOGLOBIN AICHI

HBA1, HIS50ARG
SNP: rs33967561, ClinVar: RCV000016986

See Harano et al. (1984) and Baudin et al. (1987).


.0002   HEMOGLOBIN ALBANY-GEORGIA

HEMOGLOBIN ALBANY-SUMA
HBA1, LYS11ASN
SNP: rs281860646, ClinVar: RCV000016987, RCV000016988

This was found in a clinically normal black female in Albany, Georgia (Webber et al., 1983). See also Shimasaki et al. (1983).


.0003   HEMOGLOBIN ANANTHARAJ

HBA1, LYS11GLU
SNP: rs33938574, ClinVar: RCV000016989

See Pootrakul et al. (1975).


.0004   HEMOGLOBIN ANN ARBOR

HBA1, LEU80ARG
SNP: rs34071856, ClinVar: RCV000016990

See Adams et al. (1972) and Adams (1974).


.0005   HEMOGLOBIN ARYA

HBA1, ASP47ASN
SNP: rs34269448, ClinVar: RCV000016991, RCV001811174

See Rahbar et al. (1975).


.0006   HEMOGLOBIN ATAGO

HBA1, ASP85TYR
SNP: rs33915947, ClinVar: RCV000016992

See Fujiwara (1970) and Fujiwara et al. (1971).


.0007   HEMOGLOBIN ATTLEBORO

HBA1, SER138PRO
SNP: rs34011123, rs63750801, ClinVar: RCV000016993

See McDonald et al. (1990).


.0008   HEMOGLOBIN AZTEC

HBA1, MET76THR
SNP: rs33969953, ClinVar: RCV000016994

See Shelton et al. (1985).


.0009   HEMOGLOBIN BARI

HBA1, HIS45GLN
SNP: rs281860685, ClinVar: RCV000016995

See Marinucci et al. (1980).


.0010   HEMOGLOBIN BEIJING

HBA1, LYS16ASN
SNP: rs281860648, gnomAD: rs281860648, ClinVar: RCV000016996

See Liang et al. (1982).


.0011   HEMOGLOBIN BIBBA

HBA1, LEU136PRO
SNP: rs34635364, rs41469945, ClinVar: RCV000203221, RCV000626695

See Kleihauer et al. (1968). (This is actually an allelic variant of the HBA2 gene; see 141850.0030.)


.0012   HEMOGLOBIN BOURMEDES

HBA1, PRO37ARG
SNP: rs35776155, ClinVar: RCV000016998

See Dahmane-Arbane et al. (1987).


.0013   MOVED TO 141850.0018


.0014   HEMOGLOBIN BROUSSAIS

HEMOGLOBIN J (BROUSSAIS)
HEMOGLOBIN TAGAWA I
HBA1, LYS90ASN
SNP: rs33914470, gnomAD: rs33914470, ClinVar: RCV000016999, RCV000017000, RCV000017001, RCV001811175

See de Traverse et al. (1966), Yanase et al. (1968), Vella et al. (1970), and Fleming et al. (1978).


.0015   HEMOGLOBIN CATONSVILLE

HBA1, INS GLU, PRO37/GLU/THR38
SNP: rs34667595, ClinVar: RCV000017002

See Virshup et al. (1988). Moo-Penn et al. (1989) identified insertion of a glutamic acid residue between proline-37 and threonine-38 in an unstable hemoglobin variant. The PCR-amplified fragment of the variant gene showed insertion of a GAA codon. In the normal alpha-globin gene cluster, GAG is the codon for glutamic acid. Moo-Penn et al. (1989) suggested that this mutation may have resulted from nonhomologous nonallelic gene conversion.


.0016   HEMOGLOBIN CHAD

HBA1, GLU23LYS
SNP: rs33939620, ClinVar: RCV000017003

See Boyer et al. (1968).


.0017   HEMOGLOBIN CHAPEL HILL

HBA1, ASP74GLY
SNP: rs33921047, ClinVar: RCV000017004

See Orringer et al. (1976).


.0018   HEMOGLOBIN CHESAPEAKE

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG92LEU
SNP: rs33991779, ClinVar: RCV000017005, RCV000641142

See Clegg et al. (1966) and Harano et al. (1983). Polycythemia (ECYT7; 617981) is the only clinical feature. This was the first polycythemia-producing variant to be described (Charache et al., 1966).


.0019   HEMOGLOBIN CHIAPAS

HBA1, PRO114ARG
SNP: rs33910377, ClinVar: RCV000017006, RCV001283982

See Jones et al. (1968).


.0020   HEMOGLOBIN CHICAGO

HBA1, LEU136MET
SNP: rs121913127, rs41364652, gnomAD: rs41364652, ClinVar: RCV000017007

See Bowman et al. (1986).


.0021   HEMOGLOBIN CHONGQING

HBA1, LEU2ARG
SNP: rs36030576, rs63750585, ClinVar: RCV000017008

See Zeng et al. (1984).


.0022   HEMOGLOBIN CONTALDO

HBA1, HIS103ARG
SNP: rs35329201, rs63750752, gnomAD: rs35329201, ClinVar: RCV000017009

Unstable hemoglobin due to disruption of hydrogen bond between alpha 103 (his) and beta 108 (asn) (Sciarratta et al., 1984).


.0023   HEMOGLOBIN CORDELE

HBA1, ASP47ALA
SNP: rs33944368, ClinVar: RCV000017010

See Nakatsuji et al. (1984).


.0024   HEMOGLOBIN DAGESTAN

HBA1, LYS60GLU
SNP: rs34259907, ClinVar: RCV000017011

See Spivak et al. (1981) and Lacombe et al. (1987).


.0025   MOVED TO 141850.0075


.0026   HEMOGLOBIN DANESHGAH-TEHRAN

HBA1, HIS72ARG
SNP: rs35859529, ClinVar: RCV000017013

See Rahbar et al. (1973) and de Weinstein et al. (1985).


.0027   HEMOGLOBIN DENMARK HILL

HBA1, PRO95ALA
SNP: rs33984621, ClinVar: RCV000017014

See Wiltshire et al. (1972).


.0028   HEMOGLOBIN DUAN

HBA1, ASP75ALA
SNP: rs33991223, ClinVar: RCV000017015

See Liang et al. (1981, 1988).


.0029   HEMOGLOBIN DUNN

HBA1, ASP6ASN
SNP: rs33961916, ClinVar: RCV000017016

See Jue et al. (1979) and Baklouti et al. (1988).


.0030   HEMOGLOBIN ETOBICOKE

HBA1, SER84ARG
SNP: rs33926206, rs33996798, gnomAD: rs33996798, ClinVar: RCV000017017

See Crookston et al. (1969) and Headlee et al. (1983).


.0031   HEMOGLOBIN EVANSTON

HBA1, TRP14ARG
SNP: rs33964317, gnomAD: rs33964317, ClinVar: RCV002508127

Honig et al. (1982) first described Hb Evanston in 2 black families. See also Moo-Penn et al. (1983).

Harteveld et al. (2004) found this rare variant alone and in the presence of common alpha-thalassemia deletions in 3 independent Asian cases.


.0032   HEMOGLOBIN FERNDOWN

HBA1, ASP6VAL
SNP: rs33986902, ClinVar: RCV000017019

See Lee-Potter et al. (1981).


.0033   HEMOGLOBIN FONTAINEBLEAU

HBA1, ALA21PRO
SNP: rs34324664, gnomAD: rs34324664, ClinVar: RCV000017020

Wajcman et al. (1989) found this substitution in an Italian family. The substitution produced no change in the stability or oxygen binding properties of the hemoglobin molecule. The electrophoretic properties were, furthermore, identical to those of Hb A, with the exception of isoelectric focusing in which the variant migrated like Hb A1c. Hb J(Nyanza), another substitution at position alpha-21, likewise causes no hematologic disorder.


.0034   HEMOGLOBIN FORT DE FRANCE

HBA1, HIS45ARG
SNP: rs28928883, ClinVar: RCV000017021

See Braconnier et al. (1977). Cash et al. (1989) confirmed that this is a mutant of the HBA1 gene.


.0035   HEMOGLOBIN G (AUDHALI)

HBA1, GLU23VAL
SNP: rs33939421, ClinVar: RCV000017022

See Marengo-Rowe et al. (1968).


.0036   MOVED TO 141850.0014


.0037   HEMOGLOBIN G (FORT WORTH)

HEMOGLOBIN FORT WORTH
HBA1, GLU27GLY
SNP: rs33964507, ClinVar: RCV000017023, RCV000017024

This variant was described in 2 black families. Unusually low (5%) concentration was found in heterozygotes, perhaps because of decreased ability of the abnormal alpha chain to form dimers with beta chains. See Schneider et al. (1971) and Carstairs et al. (1985).


.0038   HEMOGLOBIN G (GEORGIA)

HBA1, PRO95LEU
SNP: rs33931314, ClinVar: RCV000017025, RCV000506137

See Huisman et al. (1970).


.0039   MOVED TO 141850.0054


.0040   HEMOGLOBIN G (NORFOLK)

HBA1, ASP85ASN
SNP: rs33915947, ClinVar: RCV000017026, RCV001800307

See Cohen-Solal et al. (1975) and Lorkin et al. (1975).


.0041   HEMOGLOBIN G (PEST)

HBA1, ASP74ASN
SNP: rs28928875, ClinVar: RCV000017027, RCV001800308

Hb G (Pest) and Hb J (Buda) (141850.0008), both alpha-chain mutants, occurred together in a Hungarian male with erythrocytosis. The occurrence of some normal Hb A in this man showed the existence of at least 2 alpha loci. See Brimhall et al. (1970, 1974) and Hollan et al. (1972). Using polymerase chain reaction (PCR) to amplify selectively alpha-1 and alpha-2-globin cDNAs, Mamalaki et al. (1990) then hybridized the cDNAs to synthetic oligonucleotides specific for either the normal or the mutated sequence. Using this approach, the alpha-globin structural mutants J-Buda and G-Pest were found to be encoded by the alpha-2 and the alpha-1-globin genes, respectively. The substitution in G-Pest was a change from GAC to AAC at codon 74.


.0042   HEMOGLOBIN G (TAICHUNG)

HEMOGLOBIN Q
HEMOGLOBIN Q (THAILAND)
HEMOGLOBIN MAHIDOL
HEMOGLOBIN ASABARA
HEMOGLOBIN KURASHIKI
HBA1, ASP74HIS
SNP: rs28928875, ClinVar: RCV000017028, RCV000017029, RCV000017030, RCV000017031, RCV000017032, RCV000017033, RCV000417219, RCV000505861

See Vella et al. (1958), Gammack et al. (1961), Lie-Injo et al. (1966, 1979); Blackwell and Liu (1970), Pootrakul and Dixon (1970), Lorkin et al. (1970), Iuchi et al. (1978), and Higgs et al. (1980). Zeng et al. (1992) demonstrated that the mutation is due to a GAC-to-CAC change in codon 74 of the HBA1 gene. They developed a simple and accurate method for diagnosis of the Hb Q (Thailand) variant based on restriction enzyme analysis.


.0043   HEMOGLOBIN G (WAIMANALO)

HEMOGLOBIN AIDA
HBA1, ASP64ASN
SNP: rs33984024, gnomAD: rs33984024, ClinVar: RCV000017034, RCV000017035

See Blackwell et al. (1973) and Bunn et al. (1978). Schiliro et al. (1991) found this variant in a Filipino mother and child living in Sicily. They showed no hematologic abnormalities.


.0044   HEMOGLOBIN GARDEN STATE

HBA1, ALA82ASP
SNP: rs34879587, ClinVar: RCV000017036

See Winter et al. (1978).


.0045   HEMOGLOBIN GRADY

HEMOGLOBIN DAKAR
HBA1, 3AA INS, 118THR-GLU-PHE119
ClinVar: RCV000017038, RCV000017039

At the time it was first studied by Huisman et al. (1974), hemoglobin Grady was unique in having an insertion of threonine-glutamic acid-phenylalanine between amino acids 118 and 119 of the alpha chain. Several hemoglobins with deletions were then known (Leiden, Lyon, Freiburg, Niteroi, Tochigi, St. Antoine, Tours and Gun Hill). Scott et al. (1981) found no evidence of an extra (fifth) alpha gene. They argued, therefore, that if, as supposed, Hb Grady arose by unequal crossing over, the event occurred between alleles rather than between the separate alpha-1 and alpha-2 loci. The glu-phe-thr insertion is a repeat of normal residues 116, 117 and 118. See Cleek et al. (1983). Substitution of glutamine for histidine at alpha 112 was thought to be the change in hemoglobin Dakar; however, on restudy the hemoglobin was found to be identical to Hb Grady (Garel et al., 1976).


.0046   HEMOGLOBIN GUANGZHOU

HEMOGLOBIN HANGZHOU
HBA1, ASP64GLY
SNP: rs35873730, ClinVar: RCV000017040, RCV000017041

See Jen and Liu (1987), Zhou et al. (1987), and Li et al. (1990).


.0047   HEMOGLOBIN GUIZHOU

HEMOGLOBIN UTSUNOMIYA
HBA1, PRO77ARG
SNP: rs34019158, ClinVar: RCV000017042, RCV000017043

See Hattori et al. (1985).


.0048   HEMOGLOBIN HANDA

HEMOGLOBIN MUNAKATA
HBA1, LYS90MET
SNP: rs33911106, ClinVar: RCV000017044, RCV000017045

See Harano et al. (1982) and Sugihara et al. (1983).


.0049   HEMOGLOBIN HANDSWORTH

HBA1, GLY18ARG
SNP: rs34504387, rs63750294, gnomAD: rs34504387, ClinVar: RCV000017037

See Griffiths et al. (1977), Chih-chuan et al. (1981), and Al-Awamy et al. (1985).


.0050   HEMOGLOBIN HARBIN

HBA1, LYS16MET
SNP: rs35210126, gnomAD: rs35210126, ClinVar: RCV000017046

See Zeng et al. (1984).


.0051   HEMOGLOBIN HEKINAN

HBA1, GLU27ASP
SNP: rs41530750, gnomAD: rs41530750, ClinVar: RCV000017047, RCV000507741

See Harano et al. (1988). Using dot-blot analysis of amplified DNA with (32)p-labeled probes, Zhao et al. (1990) located the mutation in codon 27 of the minor alpha-1 globin gene and showed that the change involved a GAG (glutamic acid)-to-GAT (aspartic acid) mutation. Their patients were 3 Chinese women from Macau.

In Thailand, Ngiwsara et al. (2004) described 2 unrelated cases of compound heterozygosity for Hb Hekinan and alpha-thalassemia.


.0052   HEMOGLOBIN HIROSAKI

HBA1, PHE43LEU
SNP: rs41491146, ClinVar: RCV000017048

See Ohba et al. (1975, 1978).


.0053   HEMOGLOBIN HOBART

HBA1, HIS20ARG
SNP: rs33943087, gnomAD: rs33943087, ClinVar: RCV000017049

See Fleming et al. (1987).


.0054   HEMOGLOBIN HOPKINS 2

HBA1, HIS112ASP
SNP: rs34830032, gnomAD: rs34830032, ClinVar: RCV000017050, RCV001283981, RCV001826475

Fast hemoglobin. See Smith and Torbert (1958), Itano and Robinson (1960), Bradley et al. (1961), Ostertag et al. (1972), Clegg and Charache (1978).


.0055   HEMOGLOBIN I

HEMOGLOBIN I (BURLINGTON)
HEMOGLOBIN I (PHILADELPHIA)
HEMOGLOBIN I (SKAMANIA)
HEMOGLOBIN I (TEXAS)
HBA1, LYS16GLU
SNP: rs41407250, gnomAD: rs41407250, ClinVar: RCV000017051, RCV000017052, RCV000017053, RCV000017054, RCV000017055, RCV000507468, RCV001811176

Fast hemoglobin. Substitution of aspartic acid for lysine at alpha 16 was first reported by Murayama (1962). However, Crick pointed out that this substitution could not be accomplished by change in one base. Restudy by Beale and Lehmann (1965) and by Schneider et al. (1966) showed substitution of glutamic acid for lysine. Hemoglobin I was thought to show sickling but this has been shown to be due to faulty technique (Schneider et al., 1967). See Rucknagel et al. (1955), Schwartz et al. (1957), Itano and Robinson (1959, 1960), Ranney et al. (1962), O'Brien et al. (1964), Thompson et al. (1965), Schneider et al. (1966), Bowman and Barnett (1967), Baur (1968), Labossiere and Vella (1971), Fleming et al. (1978), and Liebhaber et al. (1984). The hemoglobin I mutation is curious in that the mutation is present in HBA2 (141850.0011) as well as in HBA1.


.0056   MOVED TO 141850.0015


.0057   HEMOGLOBIN IWATA

HBA1, HIS87ARG
SNP: rs33976776, ClinVar: RCV000017056

See Shibata et al. (1980) and Liu et al. (1983).


.0058   HEMOGLOBIN J (ABIDJAN)

HBA1, GLY51ASP
SNP: rs35934411, ClinVar: RCV000017057

See Cabannes et al. (1972).


.0059   HEMOGLOBIN J (ANATOLIA)

HBA1, LYS61THR
SNP: rs41381645, gnomAD: rs41381645, ClinVar: RCV000017058

See Giordano et al. (1990).


.0060   HEMOGLOBIN J (BIRMINGHAM)

HEMOGLOBIN J (MEERUT)
HBA1, ALA120GLU
SNP: rs36075744, rs63749927, gnomAD: rs36075744, rs63749927, ClinVar: RCV000017059, RCV000017060, RCV000759778

See Kamuzora and Lehmann (1974) and Blackwell et al. (1974).


.0061   MOVED TO 141850.0008


.0062   HEMOGLOBIN J (CAMAGUEY)

HBA1, ARG141GLY
SNP: rs33991910, rs63750134, ClinVar: RCV000017061

See Martinez et al. (1978). Romero et al. (1995) found this hemoglobin variant in 3 Spanish families. The original description by Martinez et al. (1978) was in a Cuban family of Spanish ancestry.


.0063   HEMOGLOBIN J (CAPE TOWN)

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG92GLN
SNP: rs33991779, ClinVar: RCV000017062, RCV000641166

See Botha et al. (1966), Harano et al. (1983), and Lambridis et al. (1986). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0064   HEMOGLOBIN J (CUBUJUQUI)

HBA1, ARG141SER
SNP: rs33991910, rs63750134, ClinVar: RCV000017063

See Saenz et al. (1977) and Moo-Penn et al. (1981).


.0065   HEMOGLOBIN J (HABANA)

HBA1, ALA71GLU
SNP: rs3180281, ClinVar: RCV000017064

See Colombo et al. (1974) and Ohba et al. (1983).


.0066   HEMOGLOBIN J (KUROSH)

HBA1, ALA19ASP
ClinVar: RCV000017065

See Rahbar et al. (1976).


.0067   HEMOGLOBIN J (MEDELLIN)

HBA1, GLY22ASP
SNP: rs34608326, gnomAD: rs34608326, ClinVar: RCV000017066

See Gottlieb et al. (1964).


.0068   HEMOGLOBIN J (NYANZA)

HBA1, ALA21ASP
SNP: rs11548605, ClinVar: RCV000017067

See Kendall et al. (1973).


.0069   MOVED TO 141850.0010


.0070   HEMOGLOBIN J (PARIS 1)

HEMOGLOBIN J (ALJEZUR)
HBA1, ALA12ASP
SNP: rs35615982, gnomAD: rs35615982, ClinVar: RCV000017068, RCV000017069

See Rosa et al. (1966), Trincao et al. (1968), and Marinucci et al. (1979).


.0071   HEMOGLOBIN J (RAJAPPEN)

HBA1, LYS90THR
SNP: rs33911106, ClinVar: RCV000017070, RCV001811177

See Hyde et al. (1971).


.0072   HEMOGLOBIN J (ROVIGO)

HBA1, ALA53ASP
SNP: rs34574239, ClinVar: RCV000017071

See Alberti et al. (1974) and Moo-Penn et al. (1978).


.0073   MOVED TO 141850.0036


.0074   HEMOGLOBIN J (SINGA)

HBA1, ASN78ASP
SNP: rs33964623, ClinVar: RCV000017072, RCV000017073

See Wong et al. (1984).


.0075   HEMOGLOBIN J (SINGAPORE)

HBA1, ASN78ASP AND ALA79GLY
SNP: rs387906544, ClinVar: RCV000017072, RCV000017073

Since no simple frameshift mechanism could be imagined, the possibility of 2 separate mutations was favored by Blackwell et al. (1972), who suggested that 2 separate hemoglobins, appropriately called Hb J (Singa) and Hb J (Pore), will be discovered eventually. Double mutation on the same chromosome would seem more likely than crossing-over in a compound heterozygote since the 2 codons involved are contiguous.


.0076   HEMOGLOBIN J (TASHIKUERGAN)

HBA1, ALA19GLU
SNP: rs35628685, gnomAD: rs35628685, ClinVar: RCV000017074

See Houjun et al. (1984). Li et al. (1990) found this variant in populations in the Silk Road region of China.


.0077   HEMOGLOBIN J (TONGARIKI)

HBA1, ALA115ASP
SNP: rs34204059, ClinVar: RCV000017075

See Gajdusek et al. (1967) and Beaven et al. (1972). A homozygous individual had only anomalous hemoglobin suggesting the existence of only one alpha locus in Melanesians (Abramson et al., 1970).


.0078   HEMOGLOBIN J (TORONTO)

HBA1, ALA5ASP
SNP: rs34090856, gnomAD: rs34090856, ClinVar: RCV000017076, RCV000759776, RCV001831578

See Crookston et al. (1965).


.0079   HEMOGLOBIN JACKSON

HBA1, LYS127ASN
SNP: rs33972894, rs63749865, gnomAD: rs63749865, ClinVar: RCV000017077

See Moo-Penn et al. (1976).


.0080   HEMOGLOBIN KARACHI

HBA1, ALA5PRO
SNP: rs34751764, gnomAD: rs34751764, ClinVar: RCV000017078

See Ahmed et al. (1986).


.0081   HEMOGLOBIN KARIYA

HBA1, LYS40GLU
SNP: rs34492931, ClinVar: RCV000017079

See Harano et al. (1983) and Imai et al. (1989).


.0082   HEMOGLOBIN KAWACHI

HBA1, PRO44ARG
SNP: rs33978134, ClinVar: RCV000017080

See Harano et al. (1982).


.0083   HEMOGLOBIN KOELLIKER

HEMOGLOBIN F (KOELLIKER)
HBA1, ARG141DEL
SNP: rs121913128, ClinVar: RCV000017081, RCV000017082

Not a genetic change. The C-terminal amino acid, 141, of the alpha chain (arginine) is missing, probably from the action of a carboxypeptidase present in normal plasma. This unusual fast hemoglobin is observed in persons with hemolysis. The change can occur in fetal hemoglobin also (Kohne et al., 1977). See Marti et al. (1967) and Schiliro et al. (1982).


.0084   HEMOGLOBIN KOKURA

HEMOGLOBIN BEILINSON
HEMOGLOBIN MICHIGAN-I
HEMOGLOBIN MICHIGAN-II
HEMOGLOBIN L (GASLINI)
HEMOGLOBIN TAGAWA II
HEMOGLOBIN UMI
HEMOGLOBIN MUGINO
HEMOGLOBIN YUKUHASHI-2
HBA1, ASP47GLY
SNP: rs33944368, ClinVar: RCV000017083, RCV000017084, RCV000017085, RCV000017086, RCV000017087, RCV000017088, RCV000017089, RCV000017090, RCV000017091

See Yamaoka et al. (1960), Ooya et al. (1961), Sumida (1975), and Ohba et al. (1982). The change is in TP IV (DeVries et al., 1963).


.0085   MOVED TO 141850.0012


.0086   HEMOGLOBIN L (PERSIAN GULF)

HBA1, GLY57ARG
SNP: rs35252931, ClinVar: RCV000017092

See Rahbar et al. (1969).


.0087   HEMOGLOBIN LEGNANO

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG141LEU
SNP: rs33935328, rs63751282, gnomAD: rs63751282, ClinVar: RCV000017093, RCV000641177

See Mavilio et al. (1978). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0088   HEMOGLOBIN LE LAMENTIN

HBA1, HIS20GLN
SNP: rs41525149, ClinVar: RCV000017094

See Sellaye et al. (1982), Harano et al. (1983), and Malcorra-Azpiazu et al. (1988).


.0089   HEMOGLOBIN LILLE

HBA1, ASP74ALA
SNP: rs33921047, ClinVar: RCV000017095

See Djoumessi et al. (1981) and Lu et al. (1984).


.0090   HEMOGLOBIN LOIRE

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ALA88SER
SNP: rs35239527, ClinVar: RCV000017096, RCV000656378

This variant was discovered in a 10-year-old Algerian boy born in Loire. The child had erythrocytosis (ECYT7; 617981) and microcytosis, the latter being due to iron deficiency (Baklouti et al., 1988).


.0091   HEMOGLOBIN LUXEMBOURG

HBA1, TYR24HIS
SNP: rs34743106, gnomAD: rs34743106, ClinVar: RCV000017097

Groff et al. (1989) found this substitution in association with mild hemolytic anemia and increased indirect bilirubinemia in a family originating from the Netherlands.


.0092   HEMOGLOBIN M (BOSTON)

HEMOGLOBIN GOTHENBURG
HEMOGLOBIN M (GOTHENBURG)
HEMOGLOBIN M (OSAKA)
HEMOGLOBIN M (KISKUNHALAS)
HBA1, HIS58TYR
SNP: rs35213748, ClinVar: RCV000017098, RCV000017099, RCV000017100, RCV000017101, RCV000017102

The aberrant hemoglobins associated with methemoglobinemia (see 617973) are referred to as hemoglobin M. Most of the hemoglobin M variants have substitutions of histidine at alpha 58, alpha 87, beta 63, or beta 92. These 4 amino acids are critical to the binding of the heme group. The exception is hemoglobin M (Milwaukee-1). See Gerald et al. (1957), Hansen et al. (1960), Gerald and Efron (1961), Betke (1962), Hayashi et al. (1964), Shimizu et al. (1965), Suzuki et al. (1965), Hollan et al. (1967), and Pulsinelli et al. (1973).


.0093   HEMOGLOBIN M (IWATE)

HEMOGLOBIN M (KANKAKEE)
HEMOGLOBIN M (OLDENBURG)
HEMOGLOBIN M (SENDAI)
HBA1, HIS87TYR
SNP: rs28928876, ClinVar: RCV000017103, RCV000017104, RCV000017105, RCV000017106, RCV003313924

Hb Iwate was the first variant hemoglobin found in Japan (Shibata et al., 1960). Familial cyanosis had been recognized for about 200 years in the prefecture of Iwate in Honshu, where about 70 affected persons were identified in the 1950s. It was called 'kuchikuro,' or 'blackmouth.' In each form of methemoglobinemia (see 617973), the heme iron is stabilized in the ferric form. Patients with the Hb M alpha forms are cyanotic at birth; those with the Hb M beta forms are usually not cyanotic until they are 3 months of age. Horst et al. (1987) showed that the Iwate mutation involves the alpha-1 globin gene. Specifically, they demonstrated a CAC-to-TAC mutation in codon 87 of that gene. They showed that the Iwate mutation can be identified directly on RsaI digestion. See Meyering et al. (1960), Shibata et al. (1961), Gerald and Efron (1961), Miyaji et al. (1962), Heller (1962), Heller et al. (1962), Tonz et al. (1962), Shibata (1964), Tamura (1964), Shimizu et al. (1965), Pik and Tonz (1966), Maggio et al. (1981), and Mayne et al. (1986).

Ameri et al. (1999) likewise determined that the molecular defect in 2 patients with Hb M (Kankakee) was his87 to tyr in the HBA1 gene. The proportion of Hb M (Kankakee) observed was higher than that predicted for an alpha-1-globin variant. They presented evidence suggesting that the greater-than-expected proportion of Hb M (Kankakee) results from preferential association of the electronegative beta-globin chains with the alpha-(M)-globin chains that are more electropositive than normal alpha-globin chains.


.0094   MOVED TO 141850.0047


.0095   HEMOGLOBIN MATSUE-OKI

HBA1, ASP75ASN
SNP: rs33977363, ClinVar: RCV000017107

See Ohba et al. (1977) and Yi-Tao et al. (1982).


.0096   HEMOGLOBIN MEMPHIS

HBA1, GLU23GLN
SNP: rs33939620, ClinVar: RCV000017108

Substitution of glutamine for glutamic acid at alpha 23. A hemoglobin S homozygote who also carries this abnormal hemoglobin has a mild form of sickle cell anemia. See Kraus et al. (1965, 1967) and Cooper et al. (1973).


.0097   HEMOGLOBIN MEXICO

HEMOGLOBIN J
HEMOGLOBIN J (MEXICO)
HEMOGLOBIN J (PARIS 2)
HEMOGLOBIN UPPSALA
HBA1, GLN54GLU
SNP: rs35317336, ClinVar: RCV000017109, RCV000017110, RCV000017111, RCV000017112, RCV000017113, RCV001800309

Fast hemoglobin. See Jones et al. (1963, 1968), Beckman et al. (1966), Labie and Rosa (1966), Quattrin and Ventruto (1967), Fessas et al. (1969), and Trabuchet et al. (1982).


.0098   HEMOGLOBIN MILLEDGEVILLE

ERYTHROCYTOSIS 7, INCLUDED
HBA1, PRO44LEU
SNP: rs33978134, ClinVar: RCV000017114, RCV000641192, RCV002227039

See Honig et al. (1980). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0099   HEMOGLOBIN MIYANO

HBA1, THR41SER
SNP: rs34890875, ClinVar: RCV000017115

See Ohba et al. (1989).


.0100   HEMOGLOBIN MIZUSHI

HBA1, ASP75GLY
SNP: rs33991223, ClinVar: RCV000017116

No hematologic abnormality. See Iuchi et al. (1980).


.0101   HEMOGLOBIN MOABIT

HBA1, LEU86ARG
SNP: rs35548338, ClinVar: RCV000017117

See Knuth et al. (1979).


.0102   MOVED TO 141850.0013


.0103   MOVED TO 141850.0033


.0104   HEMOGLOBIN NECKER ENFANTS-MALADES

HBA1, HIS20TYR
SNP: rs34708054, ClinVar: RCV000017118

This variant was detected by chromatography in the course of screening diabetics for Hb A1c (Wajcman et al., 1980).


.0105   HEMOGLOBIN NIGERIA

HBA1, SER81CYS
SNP: rs34936612, gnomAD: rs34936612, ClinVar: RCV000017119

See Honig et al. (1978).


.0106   HEMOGLOBIN NOKO

HBA1, MET76LYS
SNP: rs33969953, ClinVar: RCV000017120

See Shibata et al. (1981).


.0107   HEMOGLOBIN NORFOLK

HEMOGLOBIN J (NORFOLK)
HEMOGLOBIN KAGOSHIMA
HEMOGLOBIN NISHIK
HBA1, GLY57ASP
SNP: rs36062788, ClinVar: RCV000017121, RCV000017122, RCV000017123, RCV000017124

Fast hemoglobin. See Ager et al. (1958), Baglioni (1962), Huntsman et al. (1963), Hanada et al. (1964), Imamura (1966), and Lehmann and Carrell (1969).


.0108   HEMOGLOBIN NOUAKCHOTT

HBA1, PRO114LEU
SNP: rs33910377, ClinVar: RCV000017125

See Wajcman et al. (1989).


.0109   HEMOGLOBIN NUNOBIKI

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG141CYS
SNP: rs33991910, rs63750134, ClinVar: RCV000017126, RCV000641200

This hemoglobin showed an extremely high oxygen affinity. The patient, who had 'marginal erythrocytosis' (ECYT7; 617981), was shown to have 13.1% Hb Nunobiki (Shimasaki, 1985).


.0110   HEMOGLOBIN O (INDONESIA)

HEMOGLOBIN O (BUGINESE-X)
HEMOGLOBIN BUGINESE-X
HEMOGLOBIN O (OLIVIERE)
HEMOGLOBIN OLIVIERE
HBA1, GLU116LYS
SNP: rs33987053, rs63749882, gnomAD: rs33987053, rs63749882, ClinVar: RCV000017127, RCV000017128, RCV000017129, RCV000017130, RCV000017131, RCV001275688, RCV001811178

See Lie-Injo and Sadono (1958), Baglioni and Lehmann (1962), and Sansone et al. (1970).

Daud et al. (2001) investigated the occurrence of hemoglobin O (Indonesia) in related ethnic populations of the Indonesian archipelago. Nineteen individuals heterozygous for this variant were identified in 4 ethnic populations. The level of Hb O (Indonesia) in 17 of the individuals was 11.6 +/- 1.0%, significantly lower than the expected 17 to 22%, indicating the instability of Hb O (Indonesia).


.0111   HEMOGLOBIN O (PADOVA)

HBA1, GLU30LYS
SNP: rs33993166, gnomAD: rs33993166, ClinVar: RCV000017132, RCV001283984

See Vettore et al. (1974), Kilinc et al. (1985), and Martin et al. (1990). Schnedl et al. (1997) showed that the silent hemoglobin O Padova mutation causes an additional peak on high performance liquid chromatography (HPLC) and falsely low HbA(1c) values (glycated hemoglobin) when measured by HPLC. HPLC is the gold standard for evaluation of glycated hemoglobin in diabetes mellitus.


.0112   HEMOGLOBIN OGI

HEMOGLOBIN QUEENS
HBA1, LEU34ARG
SNP: rs35203445, gnomAD: rs35203445, ClinVar: RCV000017133, RCV000017134, RCV000985705

See Sugihara et al. (1982), Moo-Penn et al. (1982), and Yongsuwan et al. (1987). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0113   HEMOGLOBIN OLEANDER

HBA1, GLU116GLN
SNP: rs33987053, rs63749882, gnomAD: rs33987053, rs63749882, ClinVar: RCV000017135

See Schneider et al. (1982).


.0114   HEMOGLOBIN OTTAWA

HEMOGLOBIN SIAM
HBA1, GLY15ARG
SNP: rs35816645, gnomAD: rs35816645, ClinVar: RCV000017136, RCV000017137

See Vella et al. (1974) and Pootrakul et al. (1974).

Yodsowan et al. (2000) studied this variant in a 21-year-old Thai female and her mother. Turbpaiboon et al. (2002) reported a fourth case of Hb Siam in a healthy Thai female and concluded that there is no alpha-thalassemic effect of the variant.


.0115   HEMOGLOBIN OWARI

HBA1, VAL121MET
SNP: rs35187567, rs63751008, gnomAD: rs63751008, ClinVar: RCV000017138, RCV000506427, RCV001275689, RCV001281703

This is a neutral-to-neutral change; it was detected in the course of mass screening by isoelectric focusing (Harano et al., 1986).


.0116   HEMOGLOBIN PERSPOLIS

HBA1, ASP64TYR
SNP: rs33984024, gnomAD: rs33984024, ClinVar: RCV000017139

See Rahbar et al. (1976).


.0117   HEMOGLOBIN PETAH TIKVA

HBA1, ALA110ASP
SNP: rs63749948, gnomAD: rs63749948, ClinVar: RCV000017140, RCV001811179, RCV002482880

See Honig et al. (1981).


.0118   HEMOGLOBIN PONTOISE

HEMOGLOBIN J (PONTOISE)
HBA1, ALA63ASP
SNP: rs34502246, ClinVar: RCV000017141, RCV000017142

See Thillet et al. (1977) and Gonzalez Redondo et al. (1987).


.0119   HEMOGLOBIN PORT PHILLIP

HBA1, LEU91PRO
SNP: rs34684963, ClinVar: RCV000017143

See Brennan et al. (1977).


.0120   MOVED TO 141850.0055


.0121   HEMOGLOBIN Q (INDIA)

HBA1, ASP64HIS
SNP: rs33984024, gnomAD: rs33984024, ClinVar: RCV000017144, RCV000985707, RCV001275686

See Sukumaran et al. (1972) and Schmidt et al. (1976).


.0122   HEMOGLOBIN Q (IRAN)

HBA1, ASP75HIS
SNP: rs33977363, ClinVar: RCV000017145

See Lorkin et al. (1970), Lie-Injo et al. (1979), and Higgs et al. (1980).


.0123   MOVED TO 141850.0052


.0124   HEMOGLOBIN REIMS

HBA1, GLU23GLY
SNP: rs33939421, ClinVar: RCV000017146

See Bardakdjian-Michau et al. (1989).


.0125   HEMOGLOBIN RUSS

HBA1, GLY51ARG
SNP: rs33960522, gnomAD: rs33960522, ClinVar: RCV000017147, RCV001283977

See Huisman and Sydenstricker (1962) and Reynolds and Huisman (1966). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0126   HEMOGLOBIN SASSARI

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ASP126HIS
SNP: rs63750950, ClinVar: RCV000017148, RCV000641208

Masala et al. (1987) first described this variant as an electrophoretically slow-moving hemoglobin in 2 brothers affected by erythrocytosis (ECYT7; 617981) with slight microcytosis. In a large screening program involving 20,000 people in the city of Sassari and its surrounding area in Sardinia, Masala (1992) found the variant in 3 other apparently unrelated subjects. A male of German origin was identified by Bardakdjian-Michau et al. (1990) as a carrier of the same mutation. Sanna et al. (1994) demonstrated that the adult variant has increased oxygen affinity, a dramatic reduction of homotropic interactions, and a significant decrease of the effect of 2,3-diphosphoglycerate (35% lower than that observed for Hb A). The fetal variant also showed increased oxygen affinity compared with normal Hb F and an almost abolished heme-heme interaction.

Paglietti et al. (1998) demonstrated that Hb Sassari results from a GAC (asp)-to-CAC (his) mutation in the HBA1 gene.


.0127   HEMOGLOBIN SAVARIA

HBA1, SER49ARG
SNP: rs41518249, gnomAD: rs41518249, ClinVar: RCV000017149, RCV002476984

See Szelenyi et al. (1980), Juricic et al. (1985), Ojwang et al. (1985), and Suarez et al. (1985).


.0128   HEMOGLOBIN SAWARA

HBA1, ASP6ALA
SNP: rs33986902, ClinVar: RCV000017150

No pathologic effects were observed (Sumida et al., 1973; Sumida, 1975).


.0129   MOVED TO 141850.0028


.0130   HEMOGLOBIN SETIF

HBA1, ASP94TYR
SNP: rs34102339, ClinVar: RCV000017151

See Wajcman et al. (1972), Nozari et al. (1977), Al-Awamy et al. (1985), and Abdo (1989). Schiliro et al. (1991) found this hemoglobin variant in Sicily.

Dincol et al. (2003) stated that Hb Setif was first described in an Algerian family (Wajcman et al., 1972) and subsequently in Iranian, African, Saudi Arabian, and Maltese populations. They identified the variant in a Turkish family. Heterozygotes were asymptomatic.


.0131   HEMOGLOBIN SHAARE ZEDEK

HBA1, LYS56GLU
SNP: rs34182019, ClinVar: RCV000017152

See Abramov et al. (1980).


.0132   HEMOGLOBIN SHENYANG

HBA1, ALA26GLU
SNP: rs35477770, gnomAD: rs35477770, ClinVar: RCV000017153

See Zeng et al. (1982) and Yi et al. (1989).


.0133   HEMOGLOBIN SHIMONOSEKI

HEMOGLOBIN HIKOSHIMA
HBA1, GLN54ARG
SNP: rs36024711, ClinVar: RCV000017154, RCV000017155

See Yamaoka et al. (1960) and Hanada and Rucknagel (1964).


.0134   HEMOGLOBIN SHUANGFENG

HBA1, GLU27LYS
SNP: rs34776279, ClinVar: RCV000017156

See Liang et al. (1981).


.0135   HEMOGLOBIN SINGAPORE

HBA1, ARG141PRO
SNP: rs33935328, rs63751282, gnomAD: rs63751282, ClinVar: RCV000017157

See Clegg et al. (1969).


.0136   MOVED TO 141850.0009


.0137   HEMOGLOBIN ST. CLAUDE

HBA1, LYS127THR
SNP: rs35431217, rs63751308, ClinVar: RCV000017158

See Vella et al. (1974).


.0138   HEMOGLOBIN ST. LUKE'S

HBA1, PRO95ARG
SNP: rs33931314, ClinVar: RCV000017159, RCV001800310

See Bannister et al. (1972).

Felice (2003) cited evidence that Hb St. Luke's is a mutation of the HBA1 gene.


.0139   HEMOGLOBIN STANLEYVILLE-II

HBA1, ASN78LYS
SNP: rs34440919, gnomAD: rs34440919, ClinVar: RCV000017160

See Van Ros et al. (1968), North et al. (1980), and Rhoda et al. (1983). Costa et al. (1991) described a family with 1 homozygote and 3 heterozygotes for Hb Stanleyville II. The pattern of restriction fragments demonstrated an associated 3.7-kb alpha-globin gene deletion.


.0140   HEMOGLOBIN STRUMICA

HEMOGLOBIN SERBIA
HBA1, HIS112ARG
SNP: rs34713708, ClinVar: RCV000017161, RCV000017162

See Niazi et al. (1975) and Beksedic et al. (1975).


.0141   MOVED TO 141850.0007


.0142   MOVED TO 141850.0017


.0143   HEMOGLOBIN SUNSHINE SETH

HBA1, ASP94HIS
SNP: rs34102339, ClinVar: RCV000017163, RCV000985709

See Schroeder et al. (1979).


.0144   HEMOGLOBIN SURESNES

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ARG141HIS
SNP: rs33935328, rs63751282, gnomAD: rs63751282, ClinVar: RCV000017164, RCV000641216

See Poyart et al. (1976) and Saenz et al. (1978). Erythrocytosis (ECYT7; 617981) is a clinical feature.


.0145   HEMOGLOBIN SWAN RIVER

ERYTHROCYTOSIS 7, INCLUDED
HBA1, ASP6GLY
SNP: rs33986902, ClinVar: RCV000017165, RCV000641218, RCV001811180, RCV001831579

See Moo-Penn et al. (1987). Harano et al. (1996) observed this variant in a Japanese man with mild polycythemia (ECYT7; 617981).


.0146   MOVED TO 141850.0037


.0147   HEMOGLOBIN THAILAND

HBA1, LYS56THR
SNP: rs33949106, ClinVar: RCV000017166

See Pootrakul et al. (1977).


.0148   HEMOGLOBIN TITUSVILLE

HBA1, ASP94ASN
SNP: rs34102339, ClinVar: RCV000017167

See Schneider et al. (1975).


.0149   HEMOGLOBIN TOKONAME

HBA1, LYS139THR
SNP: rs34849179, rs56348461, ClinVar: RCV000017168

See Harano et al. (1983).


.0150   HEMOGLOBIN TORINO

HBA1, PHE43VAL
SNP: rs35511459, ClinVar: RCV000017169

See Beretta et al. (1968) and Prato et al. (1970).


.0151   HEMOGLOBIN TOTTORI

HBA1, GLY59VAL
SNP: rs28928878, ClinVar: RCV000017170

See Nakatsuji et al. (1981).


.0152   HEMOGLOBIN TOYAMA

HEINZ BODY HEMOLYTIC ANEMIA
HBA1, LEU136ARG
SNP: rs34635364, rs41469945, ClinVar: RCV000017171, RCV000017172

This hemoglobin variant is associated with congenital Heinz body anemia (Ohba et al., 1987).


.0153   HEMOGLOBIN TWIN PEAKS

HBA1, LEU113HIS
SNP: rs35654345, gnomAD: rs35654345, ClinVar: RCV000017173, RCV001811181

See Guis et al. (1985). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0154   HEMOGLOBIN UBE-2

HBA1, ASN68ASP
SNP: rs34823698, ClinVar: RCV000017176, RCV001800311

See Miyaji et al. (1967). In Turkey, Bilginer et al. (1984) found the first instance of Hb Ube-2 outside Japan. It occurred in other members of the family.

Cotton et al. (2000) found this rare variant during universal neonatal screening. The patients had normal hematologic parameters. The variant was found in twins and an older sister and in the father; both parents were of Belgian ancestry.

Shin et al. (2002) described the disorder in a Taiwanese subject.


.0155   HEMOGLOBIN UBE-4

HBA1, GLU116ALA
SNP: rs35932809, gnomAD: rs35932809, ClinVar: RCV000017177, RCV001811182

See Ohba et al. (1978).


.0156   HEMOGLOBIN WESTMEAD

HBA1, HIS122GLN
SNP: rs41479347, gnomAD: rs41479347, ClinVar: RCV000985723, RCV001275681, RCV002282188, RCV002476016, RCV003147491, RCV003147492, RCV003147493

This variant was found in a Chinese woman (Fleming et al., 1980). See Liang et al. (1988).


.0157   HEMOGLOBIN WINNIPEG

HBA1, ASP75TYR
SNP: rs33977363, ClinVar: RCV000017179, RCV001811183

See Vella et al. (1973) and Nakatsuji et al. (1983). This has been shown to be a mutation of the HBA1 gene (Cash et al., 1989).


.0158   HEMOGLOBIN WOODVILLE

HBA1, ASP6TYR
SNP: rs33961916, ClinVar: RCV000017180

Since alpha-6 asp is involved in salt linkage with alpha-127 lys of the same chain, the increased oxygen affinity of hemoglobin variants at this position probably reflects loss of this salt bridge in the deoxy state. Similar changes have been observed for Hb St. Claude which also cannot form the salt bridge because of substitution of threonine for lysine at alpha-127. See Como et al. (1986).


.0159   HEMOGLOBIN WUMING

HEMOGLOBIN J (WENCHANG-WUMING)
HBA1, LYS11GLN
SNP: rs33938574, ClinVar: RCV000017174, RCV000017175

See Zeng et al. (1981). Qualtieri et al. (1995) found this fast-migrating hemoglobin variant in a pregnant woman living in Italy.


.0160   HEMOGLOBIN ZAMBIA

HBA1, LYS60ASN
SNP: rs281860659, ClinVar: RCV000017181

See Barclay et al. (1969).


.0161   HEMOGLOBIN BELLIARD

HBA1, LYS56ASN
SNP: rs281860657, ClinVar: RCV000017182

See Wajcman et al. (1990).


.0162   HEMOGLOBIN TONOSHO

HBA1, ALA110THR
SNP: rs34629158, gnomAD: rs34629158, ClinVar: RCV000017183

In the course of measuring hemoglobin A1c by automated cation exchange high performance liquid chromatography, Ohba et al. (1990) detected a new alpha-chain variant: substitution of alanine by threonine at position 110. The abnormal alpha chain comprised about 14% of the total alpha chain.


.0163   HEMOGLOBIN FUKUTOMI

HBA1, ASP126VAL
SNP: rs33957766, rs63750467, ClinVar: RCV000017184

This hemoglobin, which has a high affinity for oxygen, was detected in a Japanese male during a screening survey. The proband was a 53-year-old man with liver cirrhosis and hemorrhagic gastritis (Hidaka et al., 1990).


.0164   HEMOGLOBIN PORT HURON

HBA1, LYS56ARG
SNP: rs33949106, ClinVar: RCV000017185

Zwerdling et al. (1991) investigated the structural abnormality of a putative Hb E detected in an African American family with no apparent Asian ancestry. The tryptic peptide map formed by high performance liquid chromatography showed that the electrophoretic variant was indeed the beta glu26-to-lys mutation of Hb E. In addition, however, the tryptic map showed an abnormal alpha peptide. The second mutation was a substitution of arginine for lysine at residue 56 of the alpha chain. The variant was clinically silent.


.0165   MOVED TO 141850.0023


.0166   HEMOGLOBIN PAVIE

HBA1, VAL135GLU
SNP: rs35994191, rs63749809, ClinVar: RCV000017186

See Wajcman et al. (1990).


.0167   HEMOGLOBIN QUESTEMBERT

HBA1, SER131PRO
SNP: rs35974739, rs63751417, ClinVar: RCV000017187

See Wajcman et al. (1990, 1993).


.0168   HEMOGLOBIN THIONVILLE

HBA1, NH2 EXTENSION, VAL1GLU
SNP: rs281864802, ClinVar: RCV000017188

See Vasseur et al. (1990). Substitution of glutamic acid for valine as the first residue in the mature protein is accompanied by retention of the initiator methionine residue. This may be the only known hemoglobin variant with an NH2-extension in the alpha-globin chain. Hb Marseille (141900.0171), Hb Doha (141900.0069), and Hb South Florida (141900.0266) are examples of hemoglobin variants with an NH2-extension due to retention of the initiator methionine in the beta-globin chain. Each is due to mutation in the first or second residue of the mature protein. Vasseur et al. (1992) found that elongation of the NH2-terminus of the alpha-chain, due to inhibition of cleavage of the initiator methionine which is then acetylated, modifies the 3-dimensional structure of hemoglobin at a region that is known to have an important role in the allosteric regulation of oxygen binding. Hb Thionville has a lowered affinity for oxygen. In contrast, response to 2,3-diphosphoglycerate is normal.

This variant was numbered based on the first amino acid of the mature protein. In the gene-based system of counting, this variant is VAL2GLY.


.0169   HEMOGLOBIN KANAGAWA

ERYTHROCYTOSIS 7, INCLUDED
HBA1, LYS40MET
SNP: rs281864828, rs41416747, ClinVar: RCV000017189, RCV000641239

In the course of a high performance liquid chromatography survey of Hb A1c, Miyashita et al. (1992) detected a new hemoglobin in a 70-year-old Japanese male with cerebral infarction and erythremia (ECYT7; 617981). Further studies revealed a lys40-to-met mutation. The variant showed increased oxygen affinity, decreased heme-heme interaction, and a lowered 2,3-diphosphoglycerate effect.

(Erythremia, a now almost obsolete synonym for polycythemia and erythrocytosis, means increased red blood cell mass.)


.0170   HEMOGLOBIN TURRIFF

HBA1, LYS99GLU
SNP: rs34806456, ClinVar: RCV000017190

In a diabetic woman of Scottish ancestry, Langdown et al. (1992) detected a new hemoglobin variant in the course of determining Hb A1c by high performance liquid chromatography. The abnormal hemoglobin chromatographed with the Hb A1c fraction. Family studies showed that a lys99-to-glu mutation, which was not associated with any hematologic disturbance, had occurred de novo. An AAG-to-GAG mutation was presumed and was not assigned to either the alpha-2- or alpha-1-globin chain.

The Hb A(1c) level in the patient of Langdown et al. (1992) was found to be very high. In a Japanese individual, Harano et al. (2003) likewise found an unexpectedly high Hb A(1c) level as measured by an automatic Hb A(1c) analyzer and found by DNA sequencing a change in the first nucleotide of codon 99 (AAG-GAG) of the Hb A1 gene.


.0171   HEMOGLOBIN ZAIRE

HBA1, 15-BP TANDEM REPEAT
ClinVar: RCV000017191

Hemoglobin Zaire was found in a 36-year-old patient from Zaire during a systematic hemoglobin study. Wajcman et al. (1992) demonstrated that the abnormality was the insertion of 5 amino acids--his, leu, pro, ala, glu--between glu116 and phe117 of the alpha-globin chain. This sequence represented a tandem repeat of the 5 amino acid residues from 112 through 116, located at the end of the GH corner of the molecule. Hemoglobin Grady (141800.0045) involves the insertion of 3 amino acids as repeats of residues 116, 117 and 118. Unequal crossing over between alleles rather than between the separate alpha-1 and alpha-2 loci was thought to be the mechanism in that case and possibly in the case of Hb Zaire as well.


.0172   HEMOGLOBIN LUTON

HBA1, HIS89LEU
SNP: rs33944813, ClinVar: RCV000017192

In a newborn infant and the father, a 35-year-old Pakistani man, Williamson et al. (1992) described a new hemoglobin with high oxygen affinity. The high affinity hemoglobin mutation was identified by HPLC peptide mapping and amino acid sequencing; leucine was substituted for histidine at amino acid position 89. The mutation occurred at the end of the F helix (FG1), a part of the hemoglobin structure critical in determining oxygen affinity since it is directly linked to the heme iron through the proximal histidine residue F8. This was the first example of a mutation at this position of the alpha chain of hemoglobin, although there were 2 high affinity mutants that involved the structurally equivalent amino acid (beta94 asp) of the beta chain: Hb Barcelona (beta94 his; 141900.0016) and Hb Bunbury (beta94 asn; 141900.0035). The new hemoglobin was called Hb Luton for the name of the hospital where the proband was originally treated. The proband was a neonate in whom 2 abnormal hemoglobin bands were found, the 2 bands being the mutant forms of fetal and adult hemoglobins containing the anomalous alpha globin. The father had microcytosis as well as mild polycythemia and was shown to have an accompanying alpha-thalassemia trait due to deletion of a single alpha-globin gene.


.0173   HEMOGLOBIN OZIERI

HBA1, ALA71VAL
SNP: rs3180281, ClinVar: RCV000017193

During a screening for hemoglobinopathies in Sardinia, Ferranti et al. (1993) found a new 'silent' hemoglobin variant in 5 apparently unrelated newborn babies. The variant was detected by means of isoelectric focusing (IEF), and further study revealed a valine for alanine substitution at position 71 of the alpha-globin chain. The substitution indicated that a C-to-T transition had occurred in the GCG codon for alanine which contains one of the 35 unmethylated CpG dinucleotides of the HBA1 gene. This observation brought to 13 the number of variants due to mutation in the CpGs of the HBA1 gene and raised the possibility that unmethylated CpGs, like methylated ones, may be hotspots for mutations.


.0174   HEMOGLOBIN ADANA

HEMOGLOBIN H DISEASE, NONDELETIONAL, INCLUDED
HBA1, GLY59ASP
SNP: rs28928878, ClinVar: RCV000017194, RCV000022600, RCV000756221, RCV001831580

In 3 Turkish children with severe thalassemia, Curuk et al. (1992) found a GGC-to-GAC mutation in codon 59 of the HBA1 gene resulting in a replacement of glycine by aspartic acid. The combination of an alpha-thal-1 deletion with the unstable Hb Adana resulted in a severe type of Hb H disease (613978).


.0175   HEMOGLOBIN AL-AIN ABU DHABI

HBA1, GLY18ASP
SNP: rs35993097, rs63750679, ClinVar: RCV000017195

During a routine program of hemoglobin screening performed in the United Arab Emirates, Abbes et al. (1992) found an electrophoretically fast-moving variant in a 9-month-old girl and in several members of her family. Amino acid sequencing demonstrated that the new variant had a gly18-to-asp substitution. Its functional properties were normal.


.0176   HEMOGLOBIN POITIERS

HBA1, HIS45ASP
SNP: rs33931984, ClinVar: RCV000017196

Hb Poitiers was discovered by Bardakdjian et al. (1994) in a 9-year-old French Caucasian boy who suffered from chronic anemia. The molecular defect consists of a missense mutation at codon 45 of the HBA1 gene, changing histidine to aspartate. Hb Poitiers displays a 2-fold increased oxygen affinity, a slightly decreased heme-heme interaction, and a slightly faster autooxidation rate. In adult hemoglobin (Hb A), the histidine residue at position 45 of the alpha-globin gene is the only polar contact between the heme group and globin. This position, however, seems to allow for moderate variation without dramatic consequences on the function of hemoglobin. His45 is replaced by glutamine in Hb Bari (141800.0009) and by arginine in Hb Fort de France (141800.0034).


.0177   MOVED TO 141850.0062


.0178   HEMOGLOBIN CAEN

HBA1, VAL132GLY
SNP: rs35166834, rs63750708, ClinVar: RCV000017197

Wajcman et al. (1993) discovered the Hb Caen variant in a 25-year-old French Caucasian woman suffering from a mild chronic hemolytic anemia. Trypsin degradation of the isolated hemoglobin alpha chain followed by high performance liquid chromatography indicated that the valine residue at position 132 was replaced by glycine.


.0179   HEMOGLOBIN YUDA

HBA1, ALA130ASP
SNP: rs41528545, rs63750613, gnomAD: rs63750613, ClinVar: RCV000017198

Hb Yuda was discovered in a 65-year-old Japanese female with noninsulin-dependent diabetes mellitus (Fujisawa et al., 1992). Gas phase Edman degradation indicated that the abnormal hemoglobin alpha chain has a substitution of aspartic acid for alanine at residue 130. Hb Yuda has a very low oxygen affinity and slightly decreased cooperative subunit interaction.


.0180   HEMOGLOBIN CAPA

HBA1, ASP94GLY
SNP: rs28928879, ClinVar: RCV000017199

Hb Capa was discovered in a 28-year-old female in Turkey who was being treated for chronic iron deficiency anemia. The hemoglobin showed abnormal electrophoretic mobility and was mildly unstable in a heat denaturation test. The molecular change was a GAC-to-GGC transition in codon 94, resulting in substitution of glycine for aspartic acid. Three other substitutions of asp-94 are known: Hb Setif (141800.0130), Hb Titusville (141800.0148), and Hb Sunshine Seth (141800.0143). All 4 variants exhibit mild instability.


.0181   HEMOGLOBIN MONTEFIORE

HBA1, ASP126TYR
SNP: rs33933481, rs63750950, gnomAD: rs33933481, ClinVar: RCV000017200

Wajcman et al. (1992) demonstrated an asp126-to-tyr change in the HBA1 gene in an individual of Puerto Rican descent. At physiologic pH (7.4), the oxygen binding of the patient's red blood cells revealed a 40% reduction. Hb Montefiore appears to have lower cooperativity than other characterized alpha-126 mutants: aspartic acid is replaced by asparagine in Hb Tarrant (141800.0146), by histidine in Hb Sassari (141800.0126), and by valine in Hb Fukutomi (141800.0163).


.0182   HEMOGLOBIN ROUEN

HEMOGLOBIN ETHIOPIA
ERYTHROCYTOSIS 7, INCLUDED
HBA1, TYR140HIS
SNP: rs35723200, rs55870409, ClinVar: RCV000017201, RCV000017202, RCV000641245

A tyr140-to-his mutation in the HBA1 gene was discovered and characterized in a French patient with polycythemia (ECYT7; 617981) by Wajcman et al. (1992) and in a newborn baby of Ethiopian descent by Webber et al. (1992). This mutation provides an example of an alteration of the C terminus of the alpha chain, a region involved in the mechanisms of allosteric regulation. Hb Rouen has increased oxygen affinity and decreased cooperativity. A complementary tyr145-to-his mutation (Hb Bethesda; 141900.0022) in the hemoglobin beta chain has more dramatic effects, suggesting that the alpha and beta chains play unequal roles in the overall function of hemoglobin.


.0183   HEMOGLOBIN MELUSINE

HBA1, PRO114SER
SNP: rs34472107, ClinVar: RCV000017203

Hb Melusine was found in an Algerian patient during a systematic screening for hemoglobinopathies in Luxembourg. Using isoelectric focusing and reverse phase high performance liquid chromatography (RP-HPLC), Wajcman et al. (1993) determined that the molecular mutation at amino acid position 114 of the HBA1 gene changed the residue from proline to serine.


.0184   HEMOGLOBIN TAYBE

HBA1, THR38DEL OR THR39DEL
SNP: rs63751150, ClinVar: RCV000017204

Girodon et al. (1992) reported the characterization of Hb Taybe, a hemoglobin variant discovered in a young Arabic woman suffering since birth from a severe and highly regenerative hemolytic anemia. DNA amplification and sequencing of the HBA1 gene indicated a 3-bp deletion (encoding threonine) at amino acid position 38 or 39. This variant increases the hydrophobicity of the amino acid chain, and it is quite unstable.


.0185   HEMOGLOBIN CEMENELUM

HBA1, ARG92TRP
SNP: rs34868036, ClinVar: RCV000017205

Wajcman et al. (1994) described a missense mutation involving the same codon as that involved in Hb Chesapeake (141800.0018), the first high oxygen affinity hemoglobin variant to be described in association with polycythemia (Charache et al., 1966). Hb Chesapeake has an arg92-to-leu substitution; Hb Cemenelum has an arg92-to-trp substitution. Hb J (Cape Town) (141800.0063) has a substitution (arg92-to-gln) in the same codon. Hb Cemenelum was discovered in a French diabetic patient with no hematologic abnormalities. The purified abnormal hemoglobin, like Hb J (Cape Town), displayed only a 1.5- to 2-fold increased oxygen affinity. The findings demonstrate that the degree to which the functional properties are altered by changes in key residues at the alpha-beta interface depends upon the specific residue occupying this position.


.0186   HEMOGLOBIN RAMONA

HBA1, TYR24CYS
SNP: rs28928880, ClinVar: RCV000017206

Hb Ramona was accidentally detected by isoelectrofocusing in a pregnant woman of part Spanish descent; its mobility was slightly faster than that of Hb A. A TAT-to-TGT change was found at codon 24, corresponding to a replacement of tyrosine by cysteine.


.0187   HEMOGLOBIN TATRAS

HBA1, LYS7ASN
SNP: rs34410516, gnomAD: rs34410516, ClinVar: RCV000017207, RCV001811184

In a 72-year-old woman born in Czechoslovakia, Wajcman et al. (1994) found a lys7-to-asn mutation when investigating the basis for an abnormal level of Hb A1c. No abnormal hematologic features were observed.


.0188   HEMOGLOBIN LISBON

HBA1, GLU23ASP
SNP: rs281860684, ClinVar: RCV000017208

In a 31-year-old man of Portuguese origin who had suffered from diabetes mellitus since the age of 15 years, Wajcman et al. (1994) found an abnormal hemoglobin during measurement of Hb A1c by an isoelectrofocusing study. There were no abnormal hematologic features.


.0189   HEMOGLOBIN ROANNE

HBA1, ASP94GLU
SNP: rs34814612, ClinVar: RCV000017209

Kister et al. (1995) described a new hemoglobin variant in a 73-year-old woman from Roanne in central France. She suffered from mild chronic hemolytic anemia. An asp94-to-glu substitution was found in the alpha-1 chain. Aspartate-94 is involved in several contacts, both in the deoxy- and oxy-structures of the hemoglobin.


.0190   HEMOGLOBIN MALHACEN

HBA1, ALA123SER
SNP: rs28928881, gnomAD: rs28928881, ClinVar: RCV000017210

Kazanetz et al. (1995) observed this variant hemoglobin in an adult male in Granada, Spain, who was evaluated because of severe iron deficiency anemia. Sequencing of the HBA1 gene showed 2 nucleotide changes. One was a simple polymorphism, as both GCG and GCT code for alanine (at codon 120). The second mutation was a GCC-to-TCC change at codon 123 resulting in replacement of alanine by serine. The replacement caused slight differences in the IEF and reversed-phase HPLC experiments, but the stability of the hemoglobin was normal. Family studies were not performed; thus, whether the 2 mutations were in coupling or repulsion was not known.


.0191   HEMOGLOBIN TUNIS-BIZERTE

HBA1, LEU129PRO
SNP: rs35993655, gnomAD: rs35993655, ClinVar: RCV000017211, RCV000756223, RCV001276182

In 3 members of a Tunisian family, Darbellay et al. (1995) identified a leu129-to-pro substitution in the HBA1 gene by sequencing the entirety of the HBA2 and HBA1 genes. In the heterozygous state, the variant was manifested by microcytosis, whereas the homozygous state showed moderate anemia with marked microcytosis.


.0192   MOVED TO 141850.0068


.0193   HEMOGLOBIN BOIS GUILLAUME

HBA1, ALA65VAL
SNP: rs34733452, ClinVar: RCV000017212

By tiny abnormalities observed during isoelectrofocusing, Wajcman et al. (1995) identified this electrophoretically silent variant in 3 members of a Caucasian-French family. This hemoglobin was the first alpha-chain variant that involved position 64. In the beta chain, the corresponding position, E14, is also occupied by an alanine residue; in Hb Seattle (141900.0256), it is replaced by aspartic acid (ala70-to-asp).


.0194   HEMOGLOBIN MANTES-LA-JOLIE

HBA1, ALA79THR
SNP: rs34586189, ClinVar: RCV000017213

Wajcman et al. (1995) found this variant hemoglobin during a systematic study of the iron status in a 6-month-old baby and his mother who originated from Chad in North Central Africa.


.0195   HEMOGLOBIN MOSELLA

HBA1, ALA111THR
SNP: rs34863047, ClinVar: RCV000017214

Wajcman et al. (1995) found this variant in a 35-year-old pregnant woman of Caucasian origin who lived in Luxembourg. The abnormal Hb was also found in one of her daughters.


.0196   HEMOGLOBIN FUCHU-I

HBA1, HIS72TYR
SNP: rs36104787, ClinVar: RCV000017215

At the Fuchu Municipal Medical Center in Tokyo, Harano et al. (1995) identified 2 Hb variants in the course of assaying glycated hemoglobin, Hb A(1c), of the peripheral blood by cation exchange HPLC. Structural analyses demonstrated that 1 patient had a his72-to-tyr substitution and the other an asn97-to-his substitution (141800.0197) of the alpha-globin chain. These were named Hb Fuchu-I and Hb Fuchu-II, respectively. Both were healthy adults.


.0197   HEMOGLOBIN FUCHU-II

HBA1, ASN97HIS
SNP: rs41322954, ClinVar: RCV000017216

See 141800.0196.


.0198   HEMOGLOBIN GOUDA

HBA1, HIS72GLN
SNP: rs28928882, ClinVar: RCV000017217

In a 54-year-old Dutch woman under treatment for diabetes mellitus, Giordano et al. (1996) incidentally found a silent alpha-chain variant on testing for glycated hemoglobin. A CAC-to-CAA transversion was predicted to result in substitution of glutamine for histidine at residue 72 in the HBA1 gene.


.0199   HEMOGLOBIN J (BISKRA)

HBA1, 24-BP DEL
SNP: rs63750122, ClinVar: RCV000017218

Wajcman et al. (1998) described Hb J-Biskra, a variant hemoglobin consisting of deletion of 24 nucleotides from the HBA1 gene and 8 amino acid residues from the alpha-globin chain: residues 50-57, 51-58, or 52-59. This variant was mildly unstable in vitro only, and there was no hematologic or biochemical evidence of hemolysis in affected family members. Wajcman et al. (1998) stated that this was the largest deletion reported to that time in a hemoglobin molecule that is expressed at an almost normal level in the red blood cell.


.0200   HEMOGLOBIN GODAVARI

HBA1, PRO95THR
SNP: rs33984621, ClinVar: RCV000017219

Hb Godavari is the fourth example of a substitution involving neutral residues at position 95 of the alpha-1 chain. In all of these variants, the electrophoretic pattern suggested that the structural modification unmasks a charged residue in the alpha-1/beta-2 contact area. The other examples are Hb Denmark Hill, pro95 to ala (141800.0027); Hb G (Georgia), and pro95 to leu (141800.0038). Hb Godavari shared the same electrophoretic properties as these variants, but displayed minimal alterations of the oxygen-binding properties. Wajcman et al. (1998) identified Hb Godavari in 2 families of different ethnic origin. The first case, found in the Netherlands, involved an Indian patient. The second case was identified a few months later in an African family from Mali, living in France.


.0201   HEMOGLOBIN OITA

HBA1, HIS45PRO
SNP: rs28928883, ClinVar: RCV000017220

Hamaguchi et al. (1998) reported a neutral (silent) hemoglobin variant, designated Hb Oita, in which a change from CAC to CCC caused a his45-to-pro substitution. In Hb Bari (141800.0009), his45 is replaced by gln. In Hb Fort de France (141800.0034), his45 is replaced by arg. In Hb Portiers (141800.0176), his45 is replaced by asp.


.0202   HEMOGLOBIN AGHIA SOPHIA

HEMOGLOBIN H DISEASE, NONDELETIONAL, INCLUDED
HBA1, VAL62DEL
SNP: rs35672478, ClinVar: RCV000017221, RCV000022601, RCV001078389

In a Greek child with Hb H disease (613978), Traeger-Synodinos et al. (1999) found deletion of codon 62 of the alpha-1 gene, leading to alpha-plus-thalassemia. Codon 62 encodes a valine residue at the E11 alpha helix, which is located in the interior of the heme pocket. Substitutions of this valine with other amino acid residues in the alpha as well as beta polypeptide chains lead, in the heterozygous carrier, either to Hb M disease or to congenital nonspherocytic hemolytic anemia. Traeger-Synodinos et al. (1999) assumed that deletion of val at position 62 disrupted the conformation of the alpha chain to such an extent that the mutated subunit was rapidly removed by proteolysis. The final result was an alpha-thalassemia phenotype rather than an unstable hemoglobin syndrome. This conclusion was supported by the apparent absence of an abnormal alpha chain in the peripheral blood of the patient. Hb Evans (141850.0006) is a val62-to-met mutation of the HBA2 gene and was found in a patient with mild hemolytic anemia. Four amino acid substitutions at position 67(E11)val of the beta chain lead to instability of the Hb tetramer and an anemia of variable degrees in the heterozygotes. One of these substitutions, val67 to glu (141900.0163), results in the stable Hb M-Milwaukee-I.


.0203   HEMOGLOBIN CHAROLLES

HBA1, HIS103TYR
SNP: rs28928884, ClinVar: RCV000017222, RCV003387725

Lacan et al. (1999) detected Hb Charolles in a 46-year-old patient who presented with microcytosis and hypochromia. It was easily detected by isoelectrofocusing and high performance liquid chromatography. It accounted for 11% of the total hemoglobin. The amino acid change resulted from a CAC-to-TAC change in codon 103.


.0204   HEMOGLOBIN ROUBAIX

HBA1, VAL55LEU
SNP: rs34068598, ClinVar: RCV000017223

In a French family from the north of France, Prehu et al. (1999) found a new HBA1 variant in 5 members. The variant was initially detected during measurement of glycated hemoglobin in a woman originating from Roubaix. Codon 55 in exon 2 was found to have a heterozygous change from GTT (val) to CTT (leu). This was a neutral variant.


.0205   HEMOGLOBIN DOUALA

HBA1, SER3PHE
SNP: rs35850071, ClinVar: RCV000017224

In a woman from Cameroon, Prehu et al. (2001) identified a new hemoglobin variant, designated Hb Douala, with a C-to-T transition (TCT-TTT) in the HBA1 gene, resulting in a ser3-to-phe (S3F) amino acid substitution. The patient was also heterozygous for Hb S (141900.0243) and for a 3.7-kb deletional alpha-thalassemia.


.0206   THALASSEMIA, ALPHA-PLUS

HBA1, 21-BP INS-DUP
SNP: rs1902161681, ClinVar: RCV000017225, RCV003736542

In a patient of Iranian descent with the hematologic profile of alpha-plus-thalassemia characterized by mild microcytosis, Waye et al. (2001) found a 21-bp insertion/duplication that gave rise to a predicted alpha-globin chain containing a duplication of amino acid residues 93-99.


.0207   THALASSEMIA, ALPHA-PLUS

HBA1, 33-BP DEL
ClinVar: RCV000017226

In a patient of Greek descent with the hematologic profile of alpha-plus-thalassemia characterized by mild microcytosis, Waye et al. (2001) found a 33-bp deletion in the HBA1 gene resulting in a predicted alpha-globin chain missing amino acid residues 64-74.


.0208   HEMOGLOBIN DELFZICHT

HBA1, ASN9LYS
SNP: rs28928885, ClinVar: RCV000017227

Harteveld et al. (2002) reported a 69-year-old Dutch woman monitored for diabetes mellitus in whom Hb A(L1c) analysis revealed a clinically silent hemoglobin variant, asn9 to lys (N9K), due to an AAC-to-AAG transversion in heterozygous state. The mutation was identical to that found at the same position in the HBA2 gene that leads to a variant named Hb Park Ridge (141850.0048).


.0209   HEMOGLOBIN SARATOGA SPRINGS

HBA1, LYS40ASN
SNP: rs28928886, ClinVar: RCV000017228

In a 34-year-old Caucasian male of Swedish ancestry who lived in Saratoga Springs, New York, Hoyer et al. (2003) identified a hemoglobin variant with abnormal oxygen affinity, designated Hb Saratoga Springs. There was no family history of erythrocytosis. The patient had no smoking history. A change of codon 40 of the HBA1 gene from AAG to AAC resulted in a lys40-to-asn (K40N) change. Lys40 is replaced by glu in Hb Kariya (141800.0081), and by met in Hb Kanagawa (141800.0169).


.0210   HEMOGLOBIN DIE

HBA1, VAL93ALA
SNP: rs34769782, ClinVar: RCV000017229

In a 7-year-old girl living near the town of Die in southeast France, Lacan et al. (2004) identified a val93-to-ala (V93A) mutation in the HBA1 gene. The family was of French Caucasian origin.


.0211   HEMOGLOBIN BEZIERS

HBA1, LYS99ASN
SNP: rs34273731, gnomAD: rs34273731, ClinVar: RCV000017230

In a 72-year-old woman of French Caucasian origin living in the city of Beziers in the south of France, Lacan et al. (2004) identified a lys99-to-asn (K99N) mutation in the HBA1 gene. The variant was found during the determination of Hb A(1c) by high performance liquid chromatography (HPLC) in this diabetic patient. Hematologic data were normal, without hepatomegaly or splenomegaly.


.0212   HEMOGLOBIN BUFFALO

HBA1, HIS89GLN
SNP: rs1061009, ClinVar: RCV000017231, RCV001811185

In a 32-year-old Somali male living in the Netherlands who was being monitored for diabetes mellitus, Harteveld et al. (2004) identified Hb S (141900.0243) in heterozygous state and a heterozygous C-to-G transversion in the HBA1 gene, resulting in a his89-to-gln (H89Q) substitution. The H89Q mutation had previously been described in a Yemenite woman and 2 apparently unrelated Somali males (Hoyer et al., 2002), and had been designated Hb Buffalo. No hematologic abnormality had been associated with the allelic variant in this or other cases. In addition to Hb Buffalo, 4 amino acid substitutions had been reported at codon 89: Hb Luton (his89 to leu; 141800.0172), Hb Villeurbanne (his89 to tyr; 141800.0213), Hb Tokyo (his89 to pro; 141800.0214), and Hb Tamano (his89 to arg; 141800.0215).


.0213   HEMOGLOBIN VILLEURBANNE

HBA1, HIS89TYR
SNP: rs34988734, ClinVar: RCV000017232

Deon et al. (1997) identified a his89-to-tyr (H89Y) mutation in the HBA1 gene as the defect in Hb Villeurbanne.


.0214   HEMOGLOBIN TOKYO

HBA1, HIS89PRO
SNP: rs33944813, ClinVar: RCV000017233

Harteveld et al. (2004) stated that Hb Tokyo carries a his89-to-pro (H89P) mutation in the HBA1 gene.


.0215   HEMOGLOBIN TAMANO

HBA1, HIS89ARG
SNP: rs33944813, ClinVar: RCV000017234

Harteveld et al. (2004) stated that Hb Tamano carries a his89-to-arg (H89R) mutation in the HBA1 gene.


.0216   HEMOGLOBIN RICCARTON

HBA1, GLY51SER
SNP: rs33960522, gnomAD: rs33960522, ClinVar: RCV000017235, RCV001811186, RCV003904846

In a 4-year-old Caucasian boy investigated for fatigue and microcytosis, Brennan et al. (2005) found a GGC-to-AGC transition at codon 51 in the HBA1 gene, resulting in a gly51-to-ser substitution (G51S). The mutation was thought not to be the cause of the microcytosis as it was detected also in the boy's father who had normal red cell indices.


.0217   HEMOGLOBIN OEGSTGEEST

HBA1, CYS104SER
SNP: rs35059618, ClinVar: RCV000017236

In an 8-year-old black female of Surinamese origin with a mild alpha-thalassemia phenotype, Harteveld et al. (2005) identified homozygosity for a TGC-to-AGC transversion in the HBA1 gene, resulting in a cys104-to-ser substitution. Cysteine-104 is involved in alpha/beta globin contact and had been described as a critical amino acid of the HBA2 chain when substituted by a tyrosine (cys104 to tyr) in Hb Sallanches (141850.0031).


.0218   HEMOGLOBIN LAMEN ISLAND

HBA1, 149709T-C
SNP: rs2142009890, ClinVar: RCV000017237

De Gobbi et al. (2006) studied 148 individuals from Melanesia with alpha-thalassemia, including 5 with HbH disease, in whom none of the theretofore described molecular defects could be found. The pattern of inheritance suggested that individuals with HbH disease were homozygous for a codominant defect, referred to as (alpha-alpha)T, causing alpha-thalassemia with a predicted genotype of (alpha-alpha)T/(alpha-alpha)T. In situ RNA hybridization in erythroid cells from an affected individual from Lamen Island (Vanuatu) detected substantially fewer nuclear transcripts from the alpha-globin genes than from the beta-globin genes. DNA FISH in 2 affected individuals showed that the alpha-globin cluster was present at its normal location of chromosome 16, and no deletions or chromosomal rearrangements were detected in any of these individuals. Linkage analysis showed that the disease phenotype in individuals was derived from telomeric chromosome 16 T. Only the C allele of SNP195 (C or T, located at coordinate 149709) segregated with thalassemia in the affected families and showed complete association with the (alpha-alpha)T haplotype. This allele was not found in a separate analysis of 131 nonthalassemic Melanesian individuals. SNP195 changes the sequence 5-prime-TAATAA-3-prime (T allele) to 5-prime-TGATAA-3-prime (C allele), potentially creating a new binding site for the key erythroid transcription factor GATA1. GATA1 binds at the C allele of SNP195 in vivo. SNP195 creates a new promoter-like element between the upstream regulatory elements and their cognate promoters. This element, when activated, causes significant downregulation of the alpha-D, alpha-2, and alpha-1 genes that lie downstream, thereby causing alpha-thalassemia.


.0219   ALPHA-THALASSEMIA

HBA1, 1-BP DEL, 354C
SNP: rs767911847, gnomAD: rs767911847, ClinVar: RCV000759777, RCV002282356, RCV002485969, RCV003413547

In a newborn of mixed black and Chinese descent who carried the Southeast Asian alpha-0-thal deletion, Eng et al. (2006) also found a 1-bp deletion of cysteine from codon 78 in exon 2 of the HBA1 gene, resulting in a frameshift and premature termination at codon 83.


.0220   HEMOGLOBIN AUCKLAND

HBA1, HIS87ASN
SNP: rs28928876, ClinVar: RCV000017239

In a 27-year-old woman with mild compensated hemolytic anemia, Brennan and Matthews (1997) identified Hb Auckland, a his87-to-asn substitution in the HBA1 gene.


.9999   HEMOGLOBIN ALPHA VARIANTS, MOLECULAR DEFECT UNKNOWN

HEMOGLOBIN J (INDIA). See Raper (1957).

HEMOGLOBIN J (MALAYA). See Lehmann (1962).

HEMOGLOBIN K (CALCUTTA). Fast hemoglobin. See Lehmann (1962).

HEMOGLOBIN K (MADRAS). See Ager and Lehmann (1957).

HEMOGLOBIN KARAMOJO. See Allbrook et al. (1965).

HEMOGLOBIN L (BOMBAY). See Sukumaran and Pik (1965).

HEMOGLOBIN M (RESERVE). Reduced oxygen affinity and decreased reversible oxygen-binding capacity (Overly et al., 1967).

HEMOGLOBIN N, ALPHA TYPE. An alpha chain anomaly was deduced from molecular hybridization experiments with canine hemoglobin (Silvestroni et al., 1963). Other hemoglobin N variants have a beta change.

HEMOGLOBIN NICOSIA. See Fessas et al. (1965).


See Also:

Al-Awamy et al. (1985); Baklouti et al. (1988); Barg et al. (1982); Barton et al. (1982); Brittenham et al. (1980); Davis et al. (1979); Dincol et al. (1994); Dozy et al. (1979); Embury et al. (1979); Harano et al. (1983); Harano et al. (1983); Harano et al. (1983); Harano et al. (1984); Harano et al. (1982); Hess et al. (1983); Higgs et al. (1981); Hill et al. (1985); Huisman and Miller (1976); Kan et al. (1979); Kielman et al. (1993); Li et al. (1990); Liang et al. (1981); Liebhaber et al. (1980); Marinucci et al. (1979); Meloni et al. (1980); Ohba et al. (1978); Phillips et al. (1979); Phillips et al. (1980); Pobedimskaya et al. (1994); Priest et al. (1989); Proudfoot and Maniatis (1980); Romao et al. (1992); Schroeder and Jones (1965); Shimizu et al. (1965); Southern (1975); Vella et al. (1974); Wainscoat et al. (1983); Wajcman et al. (1989); Wajcman et al. (1990); Wajcman et al. (1992); Wajcman et al. (1993); Wajcman et al. (1990); Weatherall and Clegg (1979); Zimmer et al. (1980)

REFERENCES

  1. Abbes, S., M'Rad, A., Fitzgerald, P. A., Dormer, P., Blouquit, Y., Kister, J., Galacteros, F., Wajcman, H. Hb Al-Ain Abu Dhabi [alpha-18 (A16) gly-to-asp]: a new hemoglobin variant discovered in an Emiratee family. Hemoglobin 16: 355-362, 1992. [PubMed: 1428941] [Full Text: https://doi.org/10.3109/03630269209005687]

  2. Abdo, M. Z. Hb Setif (alpha94(G1)asp-to-tyr) in a Saudi Arabian family. Hemoglobin 13: 737-742, 1989. [PubMed: 2634670] [Full Text: https://doi.org/10.3109/03630268908998847]

  3. Abramov, A., Lehmann, H., Robb, L. Hb Shaare Zedek (alpha56 E5 lys-to-glu). FEBS Lett. 113: 235-237, 1980. [PubMed: 7389895] [Full Text: https://doi.org/10.1016/0014-5793(80)80599-0]

  4. Abramson, R. K., Rucknagel, D. L., Shreffler, D. C., Saave, J. J. Homozygous Hb J Tongariki: evidence for only one alpha chain structural locus in Melanesians. Science 169: 194-196, 1970. [PubMed: 5427353] [Full Text: https://doi.org/10.1126/science.169.3941.194]

  5. Adams, J. G., III, Winter, W. P., Rucknagel, D. L., Spencer, H. H. Biosynthesis of hemoglobin Ann Arbor: evidence for catabolic and feedback regulation. Science 176: 1427-1429, 1972. [PubMed: 5033650] [Full Text: https://doi.org/10.1126/science.176.4042.1427]

  6. Adams, J. G., III. Hemoglobin Ann Arbor: disturbance in the coordinated biosynthesis of globin chains? Ann. N.Y. Acad. Sci. 241: 232-241, 1974. [PubMed: 4530655] [Full Text: https://doi.org/10.1111/j.1749-6632.1974.tb21881.x]

  7. Ager, J. A. M., Lehmann, H., Vella, F. Haemoglobin 'Norfolk': a new haemoglobin found in an English family. Brit. Med. J. 2: 539-541, 1958. [PubMed: 13572830] [Full Text: https://doi.org/10.1136/bmj.2.5095.539]

  8. Ager, J. A. M., Lehmann, H. Haemoglobin K in an East Indian and his family. Brit. Med. J. 1: 1449-1450, 1957. [PubMed: 13436817] [Full Text: https://doi.org/10.1136/bmj.1.5033.1449]

  9. Ahmed, A., Naqvi, S., Ehsanullah, S., Zaidi, Z. H. Abnormal hemoglobin 11 - Hb (Karachi), an alpha chain abnormality at position 5 ala-pro. J. Pak. Med. Assoc. 36: 206-208, 1986. [PubMed: 3097343]

  10. Al-Awamy, B. H., Niazi, G. A., Naeem, M. A., Wilson, J. B., Huisman, T. H. J. Hemoglobin Handsworth or alpha18(A16)gly-to-arg in a Saudi newborn. Hemoglobin 9: 183-186, 1985. [PubMed: 4030381] [Full Text: https://doi.org/10.3109/03630268508997001]

  11. Al-Awamy, B., Niazi, G. A., Wilson, J. B., Huisman, T. H. J. Hb Setif or alpha94(G1)asp-to-tyr observed in a Saudi Arabian family. Hemoglobin 9: 87-90, 1985. [PubMed: 3997545] [Full Text: https://doi.org/10.3109/03630268508996987]

  12. Alberti, R., Mariuzzi, G. M., Artibani, L., Bruni, E., Tentori, L. A new haemoglobin variant: J-Rovigo alpha 53 (E-2) alanine to aspartic acid. Biochim. Biophys. Acta 342: 1-4, 1974. [PubMed: 4824923] [Full Text: https://doi.org/10.1016/0005-2795(74)90099-3]

  13. Allbrook, D., Barnicot, N. A., Dance, N., Lawler, S. D., Marshall, R., Mungai, J. Blood groups, haemoglobin and serum factors of the Karamojo. Hum. Biol. 37: 217-237, 1965. [PubMed: 4953733]

  14. Allen, S. J., O'Donnell, A., Alexander, N. D. E., Alpers, M. P., Peto, T. E. A., Clegg, J. B., Weatherall, D. J. Alpha(+)-thalassemia protects children against disease caused by other infections as well as malaria. Proc. Nat. Acad. Sci. 94: 14736-14741, 1997. [PubMed: 9405682] [Full Text: https://doi.org/10.1073/pnas.94.26.14736]

  15. Ameri, A., Fairbanks, V. F., Yanik, G. A., Mahdi, F., Thibodeau, S. N., McCormick, D. J., Boxer, L. A., McDonagh, K. T. Identification of the molecular genetic defect of patients with methemoglobin M Kankakee (M-Iwate), alpha-87 (F8) his-to-tyr: evidence for an electrostatic model of alpha-M hemoglobin assembly. Blood 94: 1825-1826, 1999. [PubMed: 10477710]

  16. Andersen, C. B. F., Torvund-Jensen, M., Nielsen, M. J., de Oliveira, C. L. P., Hersleth, H.-P., Andersen, N. H., Pedersen, J. S., Andersen, G. R., Moestrup, S. K. Structure of the haptoglobin-haemoglobin complex. Nature 489: 456-459, 2012. [PubMed: 22922649] [Full Text: https://doi.org/10.1038/nature11369]

  17. Assum, G., Griese, E.-U., Horst, J. Detection of a restriction site polymorphism within the human alpha-globin gene complex. Hum. Genet. 69: 144-146, 1985. [PubMed: 2982725] [Full Text: https://doi.org/10.1007/BF00293285]

  18. Baglioni, C., Lehmann, H. Chemical heterogeneity of haemoglobin O. Nature 196: 229-231, 1962. [PubMed: 13968953] [Full Text: https://doi.org/10.1038/196229a0]

  19. Baglioni, C. A chemical study of hemoglobin-Norfolk. J. Biol. Chem. 237: 69-74, 1962. [PubMed: 13863929]

  20. Baklouti, F., Baudin-Chich, V., Kister, J., Marden, M., Teyssier, G., Poyart, C., Delaunay, J., Wajcman, H. Increased oxygen affinity with normal heterotropic effects in hemoglobin Loire (alpha88 (F9) ala-to-ser). Europ. J. Biochem. 177: 307-312, 1988. [PubMed: 3142772] [Full Text: https://doi.org/10.1111/j.1432-1033.1988.tb14377.x]

  21. Baklouti, F., Francina, A., Dorleac, E., Baudin-Chich, V., Gombaud-Saintonge, G., Plauchu, H., Wajcman, H., Delaunay, J., Godet, J. Asymptomatic association of hemoglobin Dunn (alpha-6(A4)asp-to-asn) and hemoglobin O-Arab (beta-121[GH4]glu-to-lys) in a Moroccan man. Am. J. Hemat. 27: 253-256, 1988. [PubMed: 3354560] [Full Text: https://doi.org/10.1002/ajh.2830270405]

  22. Bannister, W. H., Grech, J. L., Plese, C. F., Smith, L. L., Barton, B. P., Wilson, J. B., Reynolds, C. A., Huisman, T. H. J. Hemoglobin St. Luke's or alpha 95 arg (G2). Europ. J. Biochem. 29: 301-307, 1972. [PubMed: 5081617] [Full Text: https://doi.org/10.1111/j.1432-1033.1972.tb01989.x]

  23. Barclay, G. P. T., Charlesworth, D., Lehmann, H. Abnormal haemoglobins in Zambia: a new hemoglobin Zambia alpha-60 (E9) lysine to asparagine. Brit. Med. J. 4: 595-596, 1969. [PubMed: 5356548] [Full Text: https://doi.org/10.1136/bmj.4.5683.586]

  24. Bardakdjian, J., Kister, J., Wajcman, H., Boulard, P., Bohn, B., Blouquit, Y., Galacteros, F. Hb Poitiers [alpha45 (CE3) his-to-asp]: a new hemoglobin variant with a two-fold increase in oxygen affinity. Hemoglobin 18: 1-9, 1994. [PubMed: 8195004] [Full Text: https://doi.org/10.3109/03630269409014140]

  25. Bardakdjian-Michau, J., Galacteros, F., Craescu, C. T. Functional and NMR studies of Hb Sassari (asp126-alpha-to-his): role of the inter-subunit contacts in the affinity control of human hemoglobin. Biochim. Biophys. Acta 1041: 250-253, 1990. [PubMed: 2268670] [Full Text: https://doi.org/10.1016/0167-4838(90)90279-o]

  26. Bardakdjian-Michau, J., Rosa, J., Galacteros, F., Lancelot, M., Marquart, F. X. Hb Reims (alpha23(B4)glu-to-gly): a new alpha chain variant with slightly decreased stability. Hemoglobin 13: 733-735, 1989. [PubMed: 2634669] [Full Text: https://doi.org/10.3109/03630268908998846]

  27. Barg, R., Barton, P., Caine, A., Clements, R. L., Ferguson-Smith, M. A., Malcolm, S., Morrison, N., Murphy, C. S. Regional localization of the human alpha-globin gene to the short arm of chromosome 16 (16p12-pter) using both somatic cell hybrids and in situ hybridization. (Abstract) Cytogenet. Cell Genet. 32: 252-253, 1982.

  28. Barton, P., Malcolm, S., Murphy, C., Ferguson-Smith, M. A. Localization of the human alpha-globin gene cluster to the short arm of chromosome 16 (16p12-16pter) by hybridization in situ. J. Molec. Biol. 156: 269-278, 1982. [PubMed: 6177863] [Full Text: https://doi.org/10.1016/0022-2836(82)90328-x]

  29. Baudin, V., Baklouti, F., Wajcman, H., Delaunay, J. Hemoglobin Aichi (alpha50 (CE8) his-to-arg) in a French Caucasian patient. Hemoglobin 11: 145-149, 1987. [PubMed: 3623974] [Full Text: https://doi.org/10.3109/03630268709005789]

  30. Baur, E. W. Hb alpha 2 glu beta 2(Hb I) in a Caucasian family: independent mutation or common origin? Humangenetik 6: 368-372, 1968. [PubMed: 5713622]

  31. Beale, D., Lehmann, H. Abnormal haemoglobins and the genetic code. Nature 207: 259-261, 1965. [PubMed: 5886214] [Full Text: https://doi.org/10.1038/207259a0]

  32. Beaven, G. H., Hornabrook, R. W., Fox, R. H., Huehns, E. R. Occurrence of heterozygotes and homozygotes for the alpha-chain haemoglobin variant Hb-J (Tongariki) in New Guinea. Nature 235: 46-47, 1972. [PubMed: 4550394] [Full Text: https://doi.org/10.1038/235046a0]

  33. Beckman, L., Christodoulou, C., Fessas, P., Loukopoulos, D., Kaltsoya, A., Nilsson, L.-O. A Swedish haemoglobin variant. Acta Genet. Statist. Med. 16: 362-370, 1966. [PubMed: 6012906] [Full Text: https://doi.org/10.1159/000151984]

  34. Beksedic, D., Rajevska, T., Lorkin, P. A., Lehmann, H. Hb Serbia (alpha112 his-to-arg), a new haemoglobin variant from Yugoslavia. FEBS Lett. 58: 226-229, 1975. [PubMed: 1225585] [Full Text: https://doi.org/10.1016/0014-5793(75)80265-1]

  35. Beretta, A., Prato, V., Gallo, E., Lehmann, H. Haemoglobin Torino--alpha 43 (CD 1) phenylalanine replaced by valine. Nature 217: 1016-1018, 1968. [PubMed: 5643522] [Full Text: https://doi.org/10.1038/2171016a0]

  36. Betke, K. Haemoglobin-M: Typen und ihre Differenzierung (Uebersicht). In: Lehmann, H.; Betke, K.: Haemoglobin-Colloquium. Stuttgart: Georg Thieme Verlag (pub.) 1962. Pp. 39-47.

  37. Bilginer, A., Lehmann, H., Arcasoy, A. Hemoglobin Ube-2 (alpha68 asn-to-asp) observed in a Turkish family. Hemoglobin 8: 189-191, 1984. [PubMed: 6469696] [Full Text: https://doi.org/10.3109/03630268408991712]

  38. Blackwell, R. Q., Boon, W. H., Liu, C. S., Weng, M. I. Hemoglobin J Singapore: alpha-78 asn to asp; alpha-79 ala to gly. Biochim. Biophys. Acta 278: 482-490, 1972. [PubMed: 5085670] [Full Text: https://doi.org/10.1016/0005-2795(72)90008-6]

  39. Blackwell, R. Q., Jim, R. T. S., Tan, T. G. H., Weng, M. I., Liu, C. S., Wang, C. L. Hemoglobin G Waimanalo: alpha 64 asp-to-asn. Biochim. Biophys. Acta 322: 27-33, 1973. [PubMed: 4744336] [Full Text: https://doi.org/10.1016/0005-2795(73)90170-0]

  40. Blackwell, R. Q., Liu, C. S. Hemoglobin G Taichung: alpha74 asp-to-his. Biochim. Biophys. Acta 200: 70-75, 1970. [PubMed: 5410724] [Full Text: https://doi.org/10.1016/0005-2795(70)90044-9]

  41. Blackwell, R. Q., Wong, H. B., Wang, C.-L., Weng, M. I., Liu, C.-S. Hemoglobin J-Meerut: alpha 120 ala-to-glu. Biochim. Biophys. Acta 351: 7-12, 1974. [PubMed: 4600474]

  42. Botha, M. C., Beale, D., Issacs, W. A., Lehmann, H. Hemoglobin J Cape Town. Nature 212: 792-794, 1966. [PubMed: 5988206] [Full Text: https://doi.org/10.1038/212792a0]

  43. Bowman, B. H., Barnett, D. R. Amino-acid substitution in haemoglobin I (Texas variant). Nature 214: 499, 1967. [PubMed: 6032878] [Full Text: https://doi.org/10.1038/214499a0]

  44. Bowman, J. E., Bloom, R., Chen, S. S., Webber, B. B., Wilson, J. B., Kutlar, F., Kutlar, A., Huisman, T. H. J. Hb Chicago or alpha136 (H19) leu-to-met and a G-gamma-G-gamma-globin gene arrangement in a black family. Hemoglobin 10: 495-505, 1986. [PubMed: 3781866] [Full Text: https://doi.org/10.3109/03630268609014134]

  45. Boyer, S. H., Crosby, E. F., Fuller, G. F., Ulenurm, L., Buck, A. A. A survey of hemoglobins in the Republic of Chad and characterization of hemoglobin Chad: alpha 23 glu-to-lys. Am. J. Hum. Genet. 20: 570-578, 1968. [PubMed: 5714528]

  46. Braconnier, F., Gacon, G., Thillet, J., Wajcman, H., Soria, J., Maigret, P., Labie, D., Rosa, J. Hemoglobin Fort de France (alpha 45(CD3) his replaced by arg beta-2): a new variant with increased oxygen affinity. Biochim. Biophys. Acta 493: 228-233, 1977. [PubMed: 18205] [Full Text: https://doi.org/10.1016/0005-2795(77)90276-8]

  47. Bradley, T. B., Jr., Boyer, S. H., Allen, F. H., Jr. Hopkins-2 hemoglobin: a revised pedigree with data on blood and serum groups. Bull. Johns Hopkins Hosp. 108: 75-79, 1961.

  48. Brennan, S. O., Chan, T., Obele, M., George, P. M. Hb Riccarton (alpha-51(CE9)gly-to-ser): a variant arising from a novel mutation in the alpha-1 gene. Hemoglobin 29: 61-64, 2005. [PubMed: 15768556]

  49. Brennan, S. O., Matthews, J. R. D. Hb Auckland (alpha87(F8)his-to-asn): a new mutation of the proximal histidine identified by electrospray mass spectrometry. Hemoglobin 21: 393-403, 1997. [PubMed: 9322075] [Full Text: https://doi.org/10.3109/03630269708993126]

  50. Brennan, S. O., Tauro, G. P., Melrose, W., Carrell, R. W. Haemoglobin Port Phillip: alpha 91 (FG3) leu-to-pro, a new unstable hemoglobin. FEBS Lett. 81: 115-117, 1977. [PubMed: 902765] [Full Text: https://doi.org/10.1016/0014-5793(77)80940-x]

  51. Breuning, M. H., Madan, K., Verjaal, M., Wijnen, J. T., Meera Khan, P., Pearson, P. L. Human alpha-globin maps to pter-p13.3 in chromosome 16 distal to PGP. Hum. Genet. 76: 287-289, 1987. [PubMed: 3036689] [Full Text: https://doi.org/10.1007/BF00283625]

  52. Brimhall, B., Duerst, M., Hollan, S. R., Stenzel, P., Szelenyi, J., Jones, R. T. Structural characterizations of hemoglobins J-Buda (alpha 61 (E10) lys-to-asn) and G-Pest (alpha 74 (EF3) asp-to-asn). Biochim. Biophys. Acta 336: 344-360, 1974.

  53. Brimhall, B., Hollan, S., Jones, R. T., Koler, R. D., Stocklen, Z., Szelenyi, J. G. Multiple alpha-chain loci for human hemoglobin. (Abstract) Clin. Res. 18: 184, 1970.

  54. Brittenham, G., Lozoff, B., Harris, J. W., Kan, Y. W., Dozy, A. M., Nayudu, N. V. S. Alpha globin gene number: population and restriction endonuclease studies. Blood 55: 706-708, 1980. [PubMed: 6244018]

  55. Buckle, V. J., Higgs, D. R., Wilkie, A. O. M., Super, M., Weatherall, D. J. Localisation of human alpha globin to 16p13.3-pter. J. Med. Genet. 25: 847-849, 1988. [PubMed: 3236367] [Full Text: https://doi.org/10.1136/jmg.25.12.847]

  56. Bunn, H. F., Altman, A. J., Stangland, K., Firshein, S. I., Forget, B., Schmidt, G. J., Jones, R. T. Hemoglobins Aida (alpha 64 asp-to-asn) and D-Los Angeles (beta 121 glu-to-gln) in an Asian-Indian family. Hemoglobin 2: 531-540, 1978. [PubMed: 750553] [Full Text: https://doi.org/10.3109/03630267809005354]

  57. Cabannes, R., Renaud, R., Mauran, A., Pennors, H., Charlesworth, D., Price, B. G., Lehmann, H. Two fast haemoglobins in Ivory-Coast: Hb K Woolwich and a new haemoglobin Hb J Abidjan (alpha 51 gly-to-asp). Nouv. Rev. Franc. Hemat. 12: 289-300, 1972. [PubMed: 4347947]

  58. Carstairs, K. C., Raulfs, A., Kutlar, A., Chen, S. S., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hb Fort Worth or alpha(2)27(B8)glu-to-gly in a black family from Canada. Hemoglobin 9: 201-205, 1985. [PubMed: 3839776] [Full Text: https://doi.org/10.3109/03630268508997005]

  59. Carver, M. F. H., Kutlar, A. International Hemoglobin Information Center: variant list. Hemoglobin 19: 37-149, 1995. [PubMed: 7615401]

  60. Cash, F. E., Monplaisir, N., Goossens, M., Liebhaber, S. A. Locus assignment of two alpha-globin structural mutants from the Caribbean Basin: alpha Fort de France (alpha(45-arg)) and alpha Spanish Town (alpha(27-val)). Blood 74: 833-835, 1989. [PubMed: 2752146]

  61. Charache, S., Weatherall, D. J., Clegg, J. B. Polycythemia associated with a hemoglobinopathy. J. Clin. Invest. 45: 813-822, 1966. [PubMed: 5913291] [Full Text: https://doi.org/10.1172/JCI105397]

  62. Chih-chuan, L., Hai-nan, T., Kuo-feng, C. Hemoglobin Handsworth (alpha 18 (A16) gly-to-arg) in a Chinese. Hemoglobin 5: 191-193, 1981. [PubMed: 7216818] [Full Text: https://doi.org/10.3109/03630268108996924]

  63. Chui, D. H. K., Waye, J. S. Hydrops fetalis caused by alpha-thalassemia: an emerging health care problem. Blood 91: 2213-2222, 1998. [PubMed: 9516118]

  64. Cleek, M. P., Gardiner, M. B., Reese, A. L., Harris, H. F., Felice, A. E., Huisman, T. H. J. The Atlanta family with hemoglobin Grady revisited. (Letter) Am. J. Hum. Genet. 35: 1314-1316, 1983. [PubMed: 6650506]

  65. Clegg, J. B., Charache, S. The structure of hemoglobin Hopkins-2. Hemoglobin 2: 85-88, 1978. [PubMed: 646867] [Full Text: https://doi.org/10.3109/03630267808999194]

  66. Clegg, J. B., Naughton, M. A., Weatherall, D. J. Abnormal human haemoglobins: separation and characterization of the alpha and beta chains by chromatography, and the determination of two new variants, Hb Chesapeake and Hb J (Bangkok). J. Molec. Biol. 19: 91-108, 1966. [PubMed: 5967288] [Full Text: https://doi.org/10.1016/s0022-2836(66)80052-9]

  67. Clegg, J. B., Weatherall, D. J., Boon, W. H., Mustafa, D. Two new haemoglobin variants involving proline substitutions. Nature 222: 379-380, 1969. [PubMed: 5782115] [Full Text: https://doi.org/10.1038/222379a0]

  68. Cohen-Solal, M., Manesse, B., Thillet, J., Rosa, J. Haemoglobin G Norfolk alpha-85 (F6) asp-to-asn: structural characterization by sequenator analysis and functional properties of a new variant with high oxygen affinity. FEBS Lett. 50: 163-167, 1975. [PubMed: 234399] [Full Text: https://doi.org/10.1016/0014-5793(75)80480-7]

  69. Colombo, B., Vidal, H., Kamuzora, H., Lehmann, H. A new haemoglobin J-Habana--alpha 71 (E20) alanine-to-glutamic acid. Biochim. Biophys. Acta 351: 1-6, 1974. [PubMed: 4834679] [Full Text: https://doi.org/10.1016/0005-2795(74)90059-2]

  70. Como, P. F., Barber, S., Sage, R. E., Kronenberg, H. Hemoglobin Woodville: alpha6 (A4) aspartic acid-to-tyrosine. Hemoglobin 10: 135-141, 1986. [PubMed: 3754246] [Full Text: https://doi.org/10.3109/03630268609046440]

  71. Cooper, M. R., Kraus, A. P., Felts, J. H., Myers, R., Kraus, L. M. A third case of hemoglobin Memphis: sickle cell disease. Am. J. Med. 55: 535-541, 1973. [PubMed: 4743350] [Full Text: https://doi.org/10.1016/0002-9343(73)90211-8]

  72. Costa, F. F., Sonati, M. F., Zago, M. A. Hemoglobin Stanleyville II (alpha-78 asn-to-lys) is associated with a 3.7-kb alpha-globin gene deletion. Hum. Genet. 86: 319-320, 1991. [PubMed: 1671772] [Full Text: https://doi.org/10.1007/BF00202420]

  73. Cotton, F., Hansen, V., Lin, C., Parma, J., Cochaux, P., Damis, E., Vertongen, F., Gulbis, B. Hb Ube-2 [alpha-68(E17)asn-asp] and Hb Hafnia [beta-116(G18)his-gln] observed during neonatal screening in Brussels. Hemoglobin 24: 65-69, 2000. [PubMed: 10722118] [Full Text: https://doi.org/10.3109/03630260009002276]

  74. Crookston, J. H., Beale, D., Irvine, D., Lehmann, H. A new haemoglobin, J Toronto (alpha-5 alanine to aspartic acid). Nature 208: 1059-1060, 1965. [PubMed: 5870555] [Full Text: https://doi.org/10.1038/2081059a0]

  75. Crookston, J. H., Farquharson, H. A., Beale, D., Lehmann, H. Hemoglobin Etobicoke: alpha 84(F5) serine replaced by arginine. Canad. J. Biochem. 47: 143-146, 1969. [PubMed: 5774804] [Full Text: https://doi.org/10.1139/o69-023]

  76. Curuk, M. A., Altay, C., Fei, Y.-J., Kutlar, F., Baysal, E., Gu, L.-H., Huisman, T. H. J. Severe Hb H disease due to a combination of the -(alpha)20 kb deletion and Hb Adana, an unstable alpha-1 variant with gly-to-asp at alpha-59 (GGC-to-GAC). (Abstract) Blood 80: 81a, 1992.

  77. Dahmane-Arbane, M., Blouquit, Y., Arous, N., Bardakdjian, J., Benamani, M., Riou, J., Benabadji, M., Rosa, J., Galacteros, F. Hemoglobine Boumerdes alpha-37 (C2) pro-to-arg: un nouveau variant de la chaine alpha associe a l'hemoglobine S dans une famille algerienne. Nouv. Rev. Franc. Hemat. 29: 317-320, 1987. [PubMed: 3438164]

  78. Darbellay, R., Mach-Pascual, S., Rose, K., Graf, J., Beris, Ph. Haemoglobin Tunis-Bizerte: a new alpha-1 globin 129 leu-to-pro unstable variant with thalassaemic phenotype. Brit. J. Haemat. 90: 71-76, 1995. [PubMed: 7786798] [Full Text: https://doi.org/10.1111/j.1365-2141.1995.tb03382.x]

  79. Daud, D., Harahap, A., Setianingsih, I., Nainggolan, I., Tranggana, S., Pakasi, R., Marzuki, S. The hemoglobin O mutation in Indonesia: distribution and phenotypic expression. J. Hum. Genet. 46: 499-505, 2001. [PubMed: 11558897] [Full Text: https://doi.org/10.1007/s100380170030]

  80. Davis, J. R., Jr., Dozy, A. M., Lubin, B., Koenig, H. M., Pierce, H. I., Stamatoyannopoulos, G., Kan, Y. W. Alpha-thalassemia in blacks is due to gene deletion. Am. J. Hum. Genet. 31: 569-573, 1979. [PubMed: 507051]

  81. De Gobbi, M., Viprakasit, V., Hughes, J. R., Fisher, C., Buckle, V. J., Ayyub, H., Gibbons, R. J., Vernimmen, D., Yoshinaga, Y., de Jong, P., Cheng, J.-F., Rubin, E. M., Wood, W. G., Bowden, D., Higgs, D. R. A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312: 1215-1217, 2006. [PubMed: 16728641] [Full Text: https://doi.org/10.1126/science.1126431]

  82. de Traverse, P. M., Lehmann, H., Coquelet, M. L., Beale, D., Isaacs, W. A. Etude d'une hemoglobine J-alpha non encore decrite, dans une famille francaise. C. R. Seances Soc. Biol. Fil. 160: 2270-2272, 1966. [PubMed: 4228361]

  83. de Weinstein, B. I., Kutlar, A., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hemoglobin Daneshgah-Tehran or alpha72(EF1)his-to-arg in an Argentinean family. Hemoglobin 9: 409-411, 1985. [PubMed: 3841101] [Full Text: https://doi.org/10.3109/03630268508997017]

  84. Deisseroth, A., Hendrick, D. Human alpha-globin gene expression following chromosomal dependent gene transfer into mouse erythroleukemia cells. Cell 15: 55-63, 1978. [PubMed: 279411] [Full Text: https://doi.org/10.1016/0092-8674(78)90082-x]

  85. Deisseroth, A., Nienhuis, A., Turner, P., Velez, R., Anderson, W. F., Ruddle, F. H., Lawrence, J., Creagan, R. P., Kucherlapati, R. S. Localization of the human alpha globin structural gene to chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell 12: 205-218, 1977. [PubMed: 561664] [Full Text: https://doi.org/10.1016/0092-8674(77)90198-2]

  86. Deisseroth, A., Velez, R., Nienhuis, A. W. Hemoglobin synthesis in somatic cell hybrids: independent segregation of the human alpha- and beta-globin genes. Science 191: 1262-1263, 1976. [PubMed: 943846] [Full Text: https://doi.org/10.1126/science.943846]

  87. Deon, C., Prome, J. C., Prome, D., Francina, A., Groff, P., Kalmes, G., Galacteros, F., Wajcman, H. Combined mass spectrometric methods for the characterization of human hemoglobin variants localized within alpha-T9 peptide: identification of Hb Villeurbanne alpha-89 (FG1) his-to-tyr. J. Mass Spectrom. 32: 880-887, 1997. [PubMed: 9269086] [Full Text: https://doi.org/10.1002/(SICI)1096-9888(199708)32:8<880::AID-JMS547>3.0.CO;2-M]

  88. DeVries, A., Joshua, H., Lehmann, H., Hill, R. L., Fellows, R. E. The first observation of an abnormal hemoglobin in a Jewish family: hemoglobin Beilinson. Brit. J. Haemat. 9: 484-486, 1963. [PubMed: 14076130] [Full Text: https://doi.org/10.1111/j.1365-2141.1963.tb05472.x]

  89. Dincol, G., Dincol, K., Erdem, S., Pobedimskaya, D. D., Molchanova, T. P., Ye, Z., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hb Capa or alpha-94(G1)asp-to-gly, a mildly unstable variant with an A-to-G (GAC-to-GGC) mutation in codon 94 of the alpha-1-globin gene. Hemoglobin 18: 57-60, 1994. [PubMed: 8195009] [Full Text: https://doi.org/10.3109/03630269409014146]

  90. Dincol, G., Elam, D., Kutlar, A., Kutlar, F. Hb Setif [alpha-94(G1)asp-to-tyr (alpha-2)] detected in a Turkish family. Hemoglobin 27: 249-252, 2003. [PubMed: 14649316] [Full Text: https://doi.org/10.1081/hem-120026050]

  91. Djoumessi, S., Rousseaux, J., Descamps, J., Goudemand, M., Dautrevaux, M. Hemoglobin Lille, alpha-2(74(EF3) asp-to-ala)beta-2. Hemoglobin 5: 475-479, 1981. [PubMed: 7275663]

  92. Dozy, A. M., Forman, E. N., Abuelo, D. N., Barsel-Bowers, G., Mahoney, M. J., Forget, B. G., Kan, Y. W. Prenatal diagnosis of hemizygous alpha-thalassemia. JAMA 241: 1610-1613, 1979. [PubMed: 430715]

  93. Dozy, A. M., Kan, Y. W., Embury, S. H., Mentzer, W. C., Wang, W. C. Alpha-globin gene organisation in blacks precludes the severe form of alpha-thalassaemia. Nature 280: 605-607, 1979. [PubMed: 460443] [Full Text: https://doi.org/10.1038/280605a0]

  94. Eicher, E. M., Lee, B. K. Growth hormone receptor (Ghr) and hemoglobin alpha-chain pseudogene 3 (Hba-ps3) map proximal to the myelocytomatosis oncogene (Myc) on mouse chromosome 15. Mammalian Genome 1: 57-58, 1991. [PubMed: 1794046] [Full Text: https://doi.org/10.1007/BF00350847]

  95. Embury, S. H., Lebo, R. V., Dozy, A. M., Kan, Y. W. Organization of the alpha-globin genes in the Chinese alpha-thalassemia syndromes. J. Clin. Invest. 63: 1307-1310, 1979. [PubMed: 447845] [Full Text: https://doi.org/10.1172/JCI109426]

  96. Eng, B., Patterson, M., Walker, L., Hoppe, C., Azimi, M., Lee, H., Giordano, P. C., Waye, J. S. Three new alpha-thalassemia point mutations ascertained through newborn screening. Hemoglobin 30: 149-153, 2006. [PubMed: 16798638] [Full Text: https://doi.org/10.1080/03630260600642021]

  97. Felice, A. E. Hb St. Luke's (alpha-95(G2)pro-to-arg (alpha-1)). (Letter) Hemoglobin 27: 137 only, 2003. [PubMed: 12779278] [Full Text: https://doi.org/10.1081/hem-120021550]

  98. Ferranti, P., Parlapiano, A., Malorni, A., Pucci, P., Marino, G., Cossu, G., Manca, L., Masala, B. Hemoglobin Ozieri: a new alpha-chain variant (alpha-71(E20)ala-to-val): characterization using FAB- and electrospray-mass spectrometric techniques. Biochim. Biophys. Acta 1162: 203-208, 1993. [PubMed: 8448185] [Full Text: https://doi.org/10.1016/0167-4838(93)90148-k]

  99. Fessas, C., Karaklis, A., Loukopoulos, D., Stamatoyannopoulos, G., Fessas, P. Hemoglobin Nicosia: an alpha-chain variant and its combination with beta-thalassaemia. Brit. J. Haemat. 11: 323-330, 1965. [PubMed: 14282069] [Full Text: https://doi.org/10.1111/j.1365-2141.1965.tb06592.x]

  100. Fessas, P., Kaltsoya, A., Loukopoulos, D., Nilsson, L.-O. On the chemical structure of haemoglobin Uppsala. Hum. Hered. 19: 152-158, 1969. [PubMed: 5798597] [Full Text: https://doi.org/10.1159/000152211]

  101. Fleming, P. J., Arnold, B. J., Thompson, E. O. P., Hughes, W. G., Morgan, L. Hb I alpha 16 lys-to-glu and Hb Broussais alpha 90 lys-to-asn in Australian families. Pathology 10: 317-327, 1978. [PubMed: 740406] [Full Text: https://doi.org/10.3109/00313027809063520]

  102. Fleming, P. J., Hughes, W. G., Farmilo, R. K., Wyatt, K., Cooper, W. N. Hemoglobin Westmead (alpha 122(H5) his-to-gln): a new hemoglobin variant with the substitution in the alpha-beta contact area. Hemoglobin 4: 39-52, 1980. [PubMed: 6153381] [Full Text: https://doi.org/10.3109/03630268009042372]

  103. Fleming, P. J., Sumner, D. R., Wyatt, K., Hughes, W. G., Melrose, W. D., Jupe, D. M. D., Baikie, M. J. Hemoglobin Hobart or alpha20 (B1) his-to-arg: a new alpha chain hemoglobin variant. Hemoglobin 11: 211-220, 1987. [PubMed: 3654264] [Full Text: https://doi.org/10.3109/03630268709017887]

  104. Flint, J., Hill, A. V. S., Bowden, D. K., Oppenheimer, S. J., Sill, P. R., Serjeantson, S. W., Bonna-Kori, J., Bhatia, K., Alpers, M. P., Boyce, A. J., Weatherall, D. J., Clegg, J. B. High frequencies of alpha-thalassemia are the result of natural selection by malaria. Nature 321: 744-751, 1986. [PubMed: 3713863] [Full Text: https://doi.org/10.1038/321744a0]

  105. Fujisawa, K., Hattori, Y., Ohba, Y., Ando, S. Hb Yuda or alpha130 (H13) ala-to-asp; a new alpha chain variant with low oxygen affinity. Hemoglobin 16: 435-439, 1992. [PubMed: 1428950] [Full Text: https://doi.org/10.3109/03630269209005698]

  106. Fujiwara, N., Maekawa, T., Matsuda, G. Hemoglobin Atago (alpha 85 tyr): a new abnormal human hemoglobin found in Nagasaki. Int. J. Protein Res. 3: 35-39, 1971. [PubMed: 5115619]

  107. Fujiwara, N. An amino acid substitution in Hb Atago, an abnormal human hemoglobin. J. Jpn. Biochem. Soc. 42: 341-349, 1970.

  108. Fung, T. Y., Kin, L. T., Kong, L. C., Keung, L. C. Homozygous alpha-thalassemia associated with hypospadias in three survivors. Am. J. Med. Genet. 82: 225-227, 1999. [PubMed: 10215545]

  109. Gajdusek, D. C., Guiart, J., Kirk, R. L., Carrell, R. W., Irvine, D., Kynoch, P. A. M., Lehmann, H. Haemoglobin J Tongariki (alpha 115 alanine to aspartic acid): the first new haemoglobin variant found in a Pacific (Melanesian) population. J. Med. Genet. 4: 1-6, 1967. [PubMed: 6034517] [Full Text: https://doi.org/10.1136/jmg.4.1.1]

  110. Gammack, D. B., Huehns, E. R., Lehmann, H., Shooter, E. M. The abnormal polypeptide chains in a number of haemoglobin variants. Acta Genet. Statist. Med. 11: 1-16, 1961. [PubMed: 13703277] [Full Text: https://doi.org/10.1159/000151139]

  111. Gandini, E., Dallapiccola, B., Laurent, C., Suerine, E. F., Forabosco, A., Conconi, G., Del Senno, L. Evidence for localisation of genes for human alpha-globin on the long arm of chromosome 4. Nature 265: 65-66, 1977. [PubMed: 834243] [Full Text: https://doi.org/10.1038/265065a0]

  112. Garel, M. C., Goossens, M., Oudart, J. L., Blouquit, Y., Thillet, J., Rosa, J. Hemoglobin Dakar = Hb Grady: demonstration by a new approach to the analysis of the tryptic core region of the alpha chain and oxygen equilibrium properties. Biochim. Biophys. Acta 453: 459-471, 1976. [PubMed: 999899] [Full Text: https://doi.org/10.1016/0005-2795(76)90141-0]

  113. Gerald, P. S., Cook, C. D., Diamond, L. K. Hemoglobin M. Science 126: 300-301, 1957. [PubMed: 13454817] [Full Text: https://doi.org/10.1126/science.126.3268.300]

  114. Gerald, P. S., Efron, M. L. Chemical studies of several varieties of Hb M. Proc. Nat. Acad. Sci. 47: 1758-1767, 1961. [PubMed: 13897827] [Full Text: https://doi.org/10.1073/pnas.47.11.1758]

  115. Gerhard, D. S., Kawasaki, E. S., Bancroft, F. C., Szabo, P. Localization of a unique gene by direct hybridization in situ. Proc. Nat. Acad. Sci. 78: 3755-3759, 1981. [PubMed: 6943581] [Full Text: https://doi.org/10.1073/pnas.78.6.3755]

  116. Giordano, P. C., Fodde, R., Amons, R., Ploem, J. E., Bernini, L. F. Hb J-Anatolia (alpha61(E10)lys-to-thr): structural characterization and gene localization of a new alpha chain variant. Hemoglobin 14: 119-128, 1990. [PubMed: 2272835] [Full Text: https://doi.org/10.3109/03630269009046953]

  117. Giordano, P. C., Harteveld, C. L., Kok, P. J. M. J., Geenen, A., Batelaan, D., Amons, R., Bernini, L. F. Hb Gouda (alpha72(EF1)his-to-gln), a new silent alpha-chain variant. Hemoglobin 20: 21-29, 1996. [PubMed: 8745429] [Full Text: https://doi.org/10.3109/03630269609027907]

  118. Girodon, E., M'Rad, A., Martin, J., Goossens, M., Galacteros, F., Rosa, J., Gisselbrecht, C., Boiron, M., Cohen, I. J., Jaber, L., Tamari, H., Goshen, J., Zaizov, R., Wajcman, H. Hb Taybe (alpha 38 or 39 THR deleted): a new unstable alpha chain hemoglobin variant. (Abstract) Blood 80 (suppl. 1): 388a, 1992.

  119. Gonzalez Redondo, J. M., Wilson, J. B., Kutlar, A., Huisman, T. H. J., Sicilia, A., Romero, C., Fernandes Fuertes, I. Hb J-Pontoise or alpha63(E12)ala-to-asp in four members of a Spanish family. Hemoglobin 11: 47-50, 1987. [PubMed: 3583765] [Full Text: https://doi.org/10.3109/03630268709036582]

  120. Goossens, M., Dozy, A. M., Embury, S. H., Zachariadis, Z., Hadjiminas, M. G., Stamatoyannopoulos, G., Kan, Y. W. Triplicated alpha-globin loci in humans. Proc. Nat. Acad. Sci. 77: 518-521, 1980. [PubMed: 6928643] [Full Text: https://doi.org/10.1073/pnas.77.1.518]

  121. Gottlieb, A. J., Restrepo, A., Itano, H. A. Hb J (Medellin). Chemical and genetic study. Fed. Proc. 23: 172, 1964.

  122. Griffiths, K. D., Lang, A., Lehmann, H., Mann, J. R., Plowman, D., Raine, D. N. Haemoglobin Handsworth alpha 18 glycine-to-arginine. FEBS Lett. 75: 93-95, 1977. [PubMed: 852596] [Full Text: https://doi.org/10.1016/0014-5793(77)80060-4]

  123. Groff, P., Galacteros, F., Kalmes, G., Blouquit, Y., Wajcman, H. HB Luxembourg (alpha24(B5)tyr-to-his): a new unstable variant. Hemoglobin 13: 429-436, 1989. [PubMed: 2599879] [Full Text: https://doi.org/10.3109/03630268908998082]

  124. Guis, M., Mentzer, W. C., Jue, D. L., Johnson, M. H., McGuffey, J. E., Moo-Penn, W. F. Hemoglobin Twin Peaks: alpha113(GH1) leu-to-his. Hemoglobin 9: 175-177, 1985. [PubMed: 3839772] [Full Text: https://doi.org/10.3109/03630268508996999]

  125. Hamaguchi, K., Harano, K., Harano, T., Sakata, T. Hb Oita (alpha-45(CE3)his-to-pro): a new silent hemoglobin variant. Hemoglobin 22: 347-354, 1998. Note: Erratum: Hemoglobin 22: 539-540, 1998. [PubMed: 9730365] [Full Text: https://doi.org/10.3109/03630269809071529]

  126. Hanada, M., Ohta, Y., Imamura, T., Fejimura, T., Kawasaki, K., Kosaka, K., Yamaoka, K., Seita, M. Studies of abnormal hemoglobins in western Japan. (Abstract) Jpn. J. Hum. Genet. 9: 253-254, 1964.

  127. Hanada, M., Rucknagel, D. L. The characterization of hemoglobin Shimonoseki. Blood 24: 624-635, 1964. [PubMed: 14236737]

  128. Hansen, H. A., Jagenburg, O. R., Johansson, B. G. Studies on an abnormal hemoglobin causing hereditary congenital cyanosis. Acta Paediatr. (Stockh.) 49: 503-511, 1960. [PubMed: 14399582] [Full Text: https://doi.org/10.1111/j.1651-2227.1960.tb07765.x]

  129. Harano, K., Harano, T., Shibata, S., Mori, H., Ueda, S., Imai, K., Ohba, Y., Irimajiri, K. Hb J Oxford (alpha15 (A13) gly-to-asp) in Japan. Hemoglobin 8: 197-198, 1984. [PubMed: 6469697] [Full Text: https://doi.org/10.3109/03630268408991714]

  130. Harano, T., Harano, K., Hong, Y.-F., Than, A. M., Suetsugu, Y., Ohba, K. The mutation of Hb Turriff (alpha-99(G6)lys-to-glu (AAG-GAG)) is carried by the alpha-1-globin gene in a Japanese (Hb Turriff-I). Hemoglobin 27: 123-127, 2003. [PubMed: 12779275] [Full Text: https://doi.org/10.1081/hem-120021547]

  131. Harano, T., Harano, K., Imai, K., Terunuma, S. Hb Swan River (alpha6(A4)asp-to-gly) observed in a Japanese man. Hemoglobin 20: 75-78, 1996. [PubMed: 8745434] [Full Text: https://doi.org/10.3109/03630269609027912]

  132. Harano, T., Harano, K., Imai, N., Ueda, S., Seki, M. An electrophoretically silent hemoglobin variant, Hb Hekinan (alpha27 (B8) glu-to-asp) found in a Japanese. Hemoglobin 12: 61-65, 1988. [PubMed: 3384699] [Full Text: https://doi.org/10.3109/03630268808996883]

  133. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Seki, M. Hb Handa (alpha90 (FG2) lys-to-met): structure and biosynthesis of a new slightly higher oxygen affinity variant. Hemoglobin 6: 379-389, 1982. [PubMed: 6815131] [Full Text: https://doi.org/10.3109/03630268208996943]

  134. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Seki, M. Hemoglobin Tokoname (alpha139 (HC 1) lys-to-thr): a new hemoglobin variant with a slightly increased oxygen affinity. Hemoglobin 7: 85-90, 1983. [PubMed: 6188720] [Full Text: https://doi.org/10.3109/03630268309038404]

  135. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Tsuneshige, A., Uchida, E., Horiuchi, K. Hb Le Lamentin (alpha20 (B1) his-to-gln) in Japan: structure, function and biosynthesis. Hemoglobin 7: 181-184, 1983. [PubMed: 6671903] [Full Text: https://doi.org/10.3109/03630268309048645]

  136. Harano, T., Harano, K., Shibata, S., Ueda, S., Imai, K., Tsuneshige, A., Yamada, H., Seki, M., Fukui, H. Hemoglobin Kariya (alpha40 (C5) lys-to-glu) a new hemoglobin variant with an increased oxygen affinity. FEBS Lett. 153: 332-334, 1983. [PubMed: 6137414] [Full Text: https://doi.org/10.1016/0014-5793(83)80636-x]

  137. Harano, T., Harano, K., Shibata, S., Ueda, S., Mori, H., Imai, K. Hb Chesapeake (alpha92 (FG4) arg-to-leu) and Hb J Cape Town (alpha92 (FG4) arg-to-gln) first discovered in Japanese. Hemoglobin 7: 461-465, 1983. [PubMed: 6629827] [Full Text: https://doi.org/10.3109/03630268309038415]

  138. Harano, T., Harano, K., Shibata, S., Ueda, S., Mori, H., Seki, M. Hemoglobin Aichi (alpha50 (CE8) his-to-arg): a new slightly unstable hemoglobin variant discovered in Japan. FEBS Lett. 169: 297-299, 1984. [PubMed: 6714429] [Full Text: https://doi.org/10.1016/0014-5793(84)80337-3]

  139. Harano, T., Harano, K., Ueda, S., Shibata, S., Imai, K., Ohba, Y., Shinohara, T., Horio, S., Nishioka, K., Shirotani, H. Hemoglobin Kawachi (alpha 44 (CE2) pro-to-arg): a new hemoglobin variant of high oxygen affinity with amino acid substitution at alpha(1)-beta(2) contact. Hemoglobin 6: 43-49, 1982. [PubMed: 7068434] [Full Text: https://doi.org/10.3109/03630268208996932]

  140. Harano, T., Harano, K., Ueda, S. Hb Owari (alpha121 (H4) val-to-met): a new hemoglobin variant with a neutral-to-neutral amino acid substitution detected by isoelectric focusing. Hemoglobin 10: 127-134, 1986. [PubMed: 3754245] [Full Text: https://doi.org/10.3109/03630268609046439]

  141. Harano, T., Harano, K., Uehara, S., Matsushita, K. Two new alpha chain variants: Hb Fuchu-I (alpha-72(EF1)his-to-tyr) and Hb Fuchu-II (alpha-97(G4)asn-to-his). Hemoglobin 19: 389-395, 1995. [PubMed: 8718697] [Full Text: https://doi.org/10.3109/03630269509005830]

  142. Hardison, R. C., Sawada, I., Cheng, J.-F., Shen, C.-K. J., Schmid, C. W. A previously undetected pseudogene in the human alpha globin gene cluster. Nucleic Acids Res. 14: 1903-1911, 1986. [PubMed: 3952001] [Full Text: https://doi.org/10.1093/nar/14.4.1903]

  143. Harteveld, C. L., Rozendaal, L., Blom, N. A., Lo-A-Njoe, S., Akkerman, N., Arkestijn, S., Van Delft, P., Giordano, P. C. Hb Oegstgeest (alpha-104(G11)cys-to-ser(alpha-1)): a new hemoglobin variant associated with a mild alpha-thalassemia phenotype. Hemoglobin 29: 165-169, 2005. [PubMed: 16114179] [Full Text: https://doi.org/10.1081/hem-200066293]

  144. Harteveld, C. L., Van Delft, P., Akkermans, N., Arkesteijn, S., Van Rooijen-Nijdam, I. H., Kok, P. J. M. J., Versteegh, F. G. A., Giordano, P. C. Hb Buffalo [alpha-89(FG1)his-to-gln (alpha-1)], observed solely and in the presence of an Hb S [beta-6(A3)glu-to-val] heterozygosity. Hemoglobin 28: 223-227, 2004. [PubMed: 15481890] [Full Text: https://doi.org/10.1081/hem-200029150]

  145. Harteveld, C. L., Van Delft, P., Plug, R. J., Erjavec, Z., Wajcman, H., Giordano, P. C. Hb Delfzicht [alpha-9(A7)asn-to-lys (alpha-1)]: a new, clinically silent hemoglobin variant observed in a Dutch patient. Hemoglobin 26: 181-184, 2002. [PubMed: 12144062] [Full Text: https://doi.org/10.1081/hem-120005457]

  146. Harteveld, C. L., Wijermans, P. W., de Ree, J. E. L. M., Ter Hal, P., Van Delft, P., Van Rooijen-Nijdam, I. H., Rasp, E., Kok, P. J. M. J., Souverijn, J. H. M., Versteegh, F. G. A., Giordano, P. C. A new Hb Evanston allele (alpha-14(A12)trp-to-arg) found solely, and in the presence of common alpha-thalassemia deletions, in three independent Asian cases. Hemoglobin 28: 1-5, 2004. [PubMed: 15008259] [Full Text: https://doi.org/10.1081/hem-120028881]

  147. Hatton, C. S. R., Wilkie, A. O. M., Drysdale, H. C., Wood, W. G., Vickers, M. A., Sharpe, J., Ayyub, H., Pretorius, I. M., Buckle, V. J., Higgs, D. R. Alpha-thalassemia caused by a large (62 kb) deletion upstream of the human alpha-globin gene cluster. Blood 76: 221-227, 1990. [PubMed: 2364173]

  148. Hattori, Y., Ohba, Y., Suda, T., Miura, Y., Yoshinaka, H., Miyaji, T. Hemoglobin Guizhou in Japan. Hemoglobin 9: 187-192, 1985. [PubMed: 3839774] [Full Text: https://doi.org/10.3109/03630268508997002]

  149. Hayashi, A., Yamamura, Y., Ogita, S., Kikkawa, H. Hemoglobin M (Osaka), a new variant of hemoglobin M. Jpn. J. Hum. Genet. 9: 87-94, 1964. [PubMed: 5893086]

  150. Headlee, M. G., Nakatsuji, T., Lam, H., Wrightstone, R. N., Huisman, T. H. J. Hb Etobicoke, alpha85(F5) ser-to-arg found in a newborn of French-Indian-English descent. Hemoglobin 7: 285-287, 1983. [PubMed: 6874377] [Full Text: https://doi.org/10.3109/03630268309048660]

  151. Heller, P., Weinstein, H. G., Yakulis, V. J., Rosenthal, I. M. Hemoglobin M (Kankakee), a new variant of hemoglobin M. Blood 20: 287-301, 1962. [PubMed: 13906251]

  152. Heller, P. Hemoglobin M (Chicago) and M (Kankakee). In: Lehmann, H.; Betke, K. (eds.): Haemoglobin-Colloquium. Stuttgart: Georg Thieme Verlag (pub.) 1962. Pp. 47-49.

  153. Hess, J. F., Fox, M., Schmid, C., Shen, C.-K. J. Molecular evolution of the human adult alpha-globin-like gene region: insertion and deletion of Alu family repeats and non-Alu DNA sequences. Proc. Nat. Acad. Sci. 80: 5970-5974, 1983. [PubMed: 6310609] [Full Text: https://doi.org/10.1073/pnas.80.19.5970]

  154. Hidaka, K., Iuchi, I., Kobayashi, T., Katoh, K., Yaguchi, K. Hb Fukutomi (alpha126(H9)asp-to-val): a new hemoglobin variant with high oxygen affinity. Hemoglobin 14: 499-509, 1990. [PubMed: 2079432] [Full Text: https://doi.org/10.3109/03630269009005803]

  155. Higgs, D. R., Goodbourn, S. E. Y., Wainscoat, J. S., Clegg, J. B., Weatherall, D. J. Highly variable regions of DNA flank the human alpha-globin genes. Nucleic Acids Res. 9: 4213-4224, 1981. [PubMed: 6272199] [Full Text: https://doi.org/10.1093/nar/9.17.4213]

  156. Higgs, D. R., Hunt, D. M., Drysdale, H. C., Clegg, J. B., Pressley, L., Weatherall, D. J. The genetic basis of Hb Q-H disease. Brit. J. Haemat. 46: 387-400, 1980. [PubMed: 7448125] [Full Text: https://doi.org/10.1111/j.1365-2141.1980.tb05985.x]

  157. Higgs, D. R., Vickers, M. A., Wilkie, A. O. M., Pretorius, I.-M., Jarman, A. P., Weatherall, D. J. A review of the molecular genetics of the alpha-globin gene cluster. Blood 73: 1081-1104, 1989. [PubMed: 2649166]

  158. Higgs, D. R., Wainscoat, J. S., Flint, J., Hill, A. V. S., Thein, S. L., Nicholls, R. D., Teal, H., Ayyub, H., Peto, T. E. A., Falusi, A. G., Jarman, A. P., Clegg, J. B., Weatherall, D. J. Analysis of the human alpha-globin gene cluster reveals a highly informative genetic locus. Proc. Nat. Acad. Sci. 83: 5165-5169, 1986. [PubMed: 3014536] [Full Text: https://doi.org/10.1073/pnas.83.14.5165]

  159. Hill, A. V. S., Bowden, D. K., Trent, R. J., Higgs, D. R., Oppenheimer, S. J., Thein, S. L., Mickleson, K. N. P., Weatherall, D. J., Clegg, J. B. Melanesians and Polynesians share a unique alpha-thalassemia mutation. Am. J. Hum. Genet. 37: 571-580, 1985. [PubMed: 2988335]

  160. Hill, A. V. S., Thein, S. L., Mavo, B., Weatherall, D. J., Clegg, J. B. Non-deletion haemoglobin H disease in Papua New Guinea. J. Med. Genet. 24: 767-771, 1987. [PubMed: 2892939] [Full Text: https://doi.org/10.1136/jmg.24.12.767]

  161. Hollan, S. R., Szelenyi, J. G., Brimhall, B., Duerst, M., Jones, R. T., Koler, R. D., Stocklen, Z. Multiple alpha chain loci for human haemoglobins: Hb J (Buda) and Hb G (Pest). Nature 235: 47-50, 1972.

  162. Hollan, S. R., Szelenyi, J. G., Lehmann, H., Beale, D. A Boston-type haemoglobin M in Hungary: haemoglobin M Kiskunhalas. Haematologica 1: 11-18, 1967.

  163. Honig, G. R., Shamsuddin, M., Tremaine, L. M., Mason, R. G., Vida, L. N., Sarnwick, R., Shahidi, N. T. Hemoglobin Nigeria (alpha81 ser-to-cys), a new variant having an inhibitory effect on the gelation of sickle hemoglobin. (Abstract) Blood 52 (suppl. 1): 113, 1978.

  164. Honig, G. R., Shamsuddin, M., Vida, L. N., Mompoint, M., Bowie, L., Jones, E., Weil, S. Hb Evanston (alpha 14 trp-to-arg): a new variant with thalassemia-like hematologic expression. (Abstract) Blood 60: 53a, 1982.

  165. Honig, G. R., Shamsuddin, M., Zaizov, R., Steinherz, M., Solar, I., Kirschmann, C. Hemoglobin Petah Tikva (alpha 110 ala-to-asp): a new unstable variant with alpha-thalassemia-like expression. Blood 57: 705-711, 1981. [PubMed: 7470621]

  166. Honig, G. R., Vida, L. N., Shamsuddin, M., Mason, R. G., Schlumpf, H. W., Luke, R. A. Hemoglobin Milledgeville (alpha44 (CD2) pro-to-leu): a new variant with increased oxygen affinity. Biochim. Biophys. Acta 626: 424-431, 1980. [PubMed: 7213661] [Full Text: https://doi.org/10.1016/0005-2795(80)90138-5]

  167. Horst, J., Assum, G., Griese, E. U., Eigel, A., Hampl, W., Kohne, E. Hemoglobin M Iwate is caused by a C-to-T transition in codon 87 of the human alpha-1-globin gene. Hum. Genet. 75: 53-55, 1987. [PubMed: 3026948] [Full Text: https://doi.org/10.1007/BF00273839]

  168. Houjun, L., Dexiang, L., Zhiguo, L., Ping, L., Ly, L., Ji, C., Shaozhi, H. A new fast-moving hemoglobin variant, Hb J-Tashikuergan alpha19 (AB1) ala-to-glu. Hemoglobin 8: 391-395, 1984.

  169. Hoyer, J. D., McCormick, D. J., Snow, K., Lawler, J., Jadick, M., Grageda, R., Early, J. L., Ball, C., Skarda, P., Kubik, K. S., Holmes, M. W., Fairbanks, V. F. Three new variants of the alpha-1-globin gene without clinical or hematologic effects: Hb Hagerstown [alpha-44(CE2)pro-to-ala (alpha-1)]; Hb Buffalo [alpha-89(FG1)his-to-gln (alpha-1)], a hemoglobin variant from Somalia and Yemen; Hb Wichita [alpha-95(G2)pro-to-gln (alpha-1)]; and a second, unrelated, case of Hb Roubaix [alpha-55(E4)val-to-leu (alpha-1)]. Hemoglobin 26: 291-298, 2002. [PubMed: 12403494] [Full Text: https://doi.org/10.1081/hem-120015033]

  170. Hoyer, J. D., Weinhold, J., Mailhot, E., Alter, D., McCormick, D. J., Snow, K., Kubik, K. S., Holmes, M. W., Fairbanks, V. F. Three new hemoglobin variants with abnormal oxygen affinity: Hb Saratoga Springs [alpha-40(C5)lys-to-asn (alpha-1)], Hb Santa Clara [beta-97(FG4)his-to-asn], and Hb Sparta [beta-103(G5)phe-to-val]. Hemoglobin 27: 235-241, 2003. [PubMed: 14649314] [Full Text: https://doi.org/10.1081/hem-120026048]

  171. Huisman, T. H. J., Adams, H. R., Wilson, J. B., Efremov, G. D., Reynolds, C. A., Wrightstone, R. N. Hemoglobin G Georgia or alpha 95 leu (G-2) beta 2. Biochim. Biophys. Acta 200: 578-580, 1970. [PubMed: 5436649] [Full Text: https://doi.org/10.1016/0005-2795(70)90117-0]

  172. Huisman, T. H. J., Carver, M. F. H., Efremov, G. D. A syllabus of human hemoglobin variants (1996). Augusta, Ga.: The Sickle Cell Anemia Foundation (pub.) 1996.

  173. Huisman, T. H. J., Miller, A. Hb Grady and alpha-thalassemia: a contribution to the problem of the number of Hb (alpha) structural loci in man. Am. J. Hum. Genet. 28: 363-369, 1976. [PubMed: 941904]

  174. Huisman, T. H. J., Sydenstricker, V. P. Difference in gross structure of two electrophoretically identical 'minor' hemoglobin components. Nature 193: 489-491, 1962. [PubMed: 14449876] [Full Text: https://doi.org/10.1038/193489a0]

  175. Huisman, T. H. J., Wilson, J. B., Gravely, M., Hubbard, M. Hemoglobin Grady: the first example of a variant with elongated chains due to an insertion of residues. Proc. Nat. Acad. Sci. 71: 3270-3273, 1974. [PubMed: 4528583] [Full Text: https://doi.org/10.1073/pnas.71.8.3270]

  176. Huntsman, R. G., Hall, M., Lehmann, H., Sukumaran, P. K. A second and a third abnormal haemoglobin in Norfolk. Hb G-Norfolk and Hb D-Norfolk. Brit. Med. J. 1: 720-722, 1963. [PubMed: 13955802] [Full Text: https://doi.org/10.1136/bmj.1.5332.720]

  177. Hyde, R. D., Kinderlerer, J. L., Lehmann, H., Hall, M. Hb J Rajappen. Biochim. Biophys. Acta 243: 515-519, 1971. [PubMed: 5129592]

  178. Imai, K., Tsuneshige, A., Harano, T., Harano, K. Structure-function relationships in hemoglobin Kariya, lys40(C5)alpha-to-glu, with high oxygen affinity: functional role of the salt bridge between lys40alpha and the beta-chain COOH terminus. J. Biol. Chem. 264: 11174-11180, 1989. [PubMed: 2500435]

  179. Imamura, T. Hemoglobin Kagoshima: an example of hemoglobin Norfolk in a Japanese family. Am. J. Hum. Genet. 18: 584-593, 1966. [PubMed: 5927878]

  180. Itano, H. A., Robinson, E. A. Formation of normal and double abnormal haemoglobins by recombination of haemoglobin I with S and C. Nature 183: 1799-1800, 1959. [PubMed: 14405987] [Full Text: https://doi.org/10.1038/1831799a0]

  181. Itano, H. A., Robinson, E. A. Genetic control of the alpha- and beta-chains of hemoglobin. Proc. Nat. Acad. Sci. 46: 1492-1501, 1960. [PubMed: 16590776] [Full Text: https://doi.org/10.1073/pnas.46.11.1492]

  182. Iuchi, I., Hidaka, K., Ueda, S., Shibata, S., Kusumoto, T. Hemoglobin G Taichung (alpha 74 asp-to-his) heterozygotes found in two Japanese families. Hemoglobin 2: 79-84, 1978. [PubMed: 640847] [Full Text: https://doi.org/10.3109/03630267808999193]

  183. Iuchi, I., Shimasaki, S., Hidaka, K., Harano, T., Ueda, S., Shibata, S., Mizushima, J., Kubo, N. Hemoglobin Mizushi (alpha75 EF4 asp-to-gly): a new hemoglobin variant observed in a Japanese family. Hemoglobin 4: 209-214, 1980. [PubMed: 7390865]

  184. Jarman, A. P., Higgs, D. R. A new hypervariable marker for the human alpha-globin gene cluster. Am. J. Hum. Genet. 43: 249-256, 1988. [PubMed: 2901223]

  185. Jen, P. C., Liu, Y. Hemoglobin Guangzhou, alpha64 (E3) asp-to-gly, a new abnormal hemoglobin found in Guangzhou, China. Hemoglobin 11: 25-30, 1987. [PubMed: 3454663] [Full Text: https://doi.org/10.3109/03630268709036577]

  186. Jones, R. T., Brimhall, B., Lisker, R. Chemical characterization of hemoglobin Mexico and hemoglobin Chiapas. Biochim. Biophys. Acta 154: 488-495, 1968. [PubMed: 5650416] [Full Text: https://doi.org/10.1016/0005-2795(68)90008-1]

  187. Jones, R. T., Koler, R. D., Lisker, R. The chemical structure of hemoglobin Mexico determined by automatic peptide chromatography and subunit hybridization. Clin. Res. 11: 105, 1963.

  188. Jue, D. L., Johnson, M. H., Patchen, L. C., Moo-Penn, W. F. Hemoglobin Dunn: alpha6 aspartic acid-to-asparagine. Hemoglobin 3: 137-143, 1979. [PubMed: 478975] [Full Text: https://doi.org/10.3109/03630267908998909]

  189. Juricic, D., Efremov, G. D., Wilson, J. B., Huisman, T. H. J. Hb Savaria or alpha49(CE7)ser-to-arg in a Yugoslavian family. Hemoglobin 9: 631-633, 1985. [PubMed: 3937826] [Full Text: https://doi.org/10.3109/03630268508997046]

  190. Kamuzora, H., Lehmann, H. A new hemoglobin variant. Hemoglobin J (Birmingham): alpha 120 (H3) ala-to-glu. Ann. Clin. Biochem. 11: 53-55, 1974.

  191. Kan, Y. W., Dozy, A. M., Stamatoyannopoulos, G., Hadjiminas, M. G., Zachariadis, Z., Furbetta, M., Cao, A. Molecular basis of hemoglobin-H disease in the Mediterranean population. Blood 54: 1434-1438, 1979. [PubMed: 508946]

  192. Kan, Y. W., Golbus, M. S., Dozy, A. M. Prenatal diagnosis of alpha-thalassemia: clinical application of molecular hybridization. New Eng. J. Med. 295: 1165-1167, 1976. [PubMed: 980019] [Full Text: https://doi.org/10.1056/NEJM197611182952104]

  193. Kazanetz, E. G., Leonova, J. Y., Wilson, J. B., McMillan, S. K., Walbrecht, M., de Pablos Gallego, J. M., Huisman, T. H. J. Hb Anamosa or alpha(2)-111(G18)ala--val-beta2 (alpha2 mutation) and Hb Mulhacen or alpha(2)-123(H6)ala--ser-beta2 (alpha1 mutation) are two silent, stable variants detected by sequencing of amplified DNA. Hemoglobin 19: 1-6, 1995. [PubMed: 7615398] [Full Text: https://doi.org/10.3109/03630269509069724]

  194. Kendall, A. G., Barr, R. D., Lang, A., Lehmann, H. Hemoglobin J (Nyanza) alpha 21 (B2) ala-to-asp. Biochim. Biophys. Acta 310: 357-359, 1973. [PubMed: 4719146] [Full Text: https://doi.org/10.1016/0005-2795(73)90116-5]

  195. Kielman, M. F., Smits, R., Devi, T. S., Fodde, R., Bernini, L. F. Homology of a 130-kb region enclosing the alpha-globin gene cluster, the alpha-locus controlling region, and two non-globin genes in human and mouse. Mammalian Genome 4: 314-323, 1993. [PubMed: 8318735] [Full Text: https://doi.org/10.1007/BF00357090]

  196. Kilinc, Y., Kumi, M., Gurgey, A., Altay, C., Webber, B. B., Wilson, J. B., Kutlar, A., Huisman, T. H. J. Hemoglobin O-Padova or alpha30(B11)glu-to-lys observed in members of a Turkish family. Hemoglobin 9: 621-625, 1985. [PubMed: 2869010] [Full Text: https://doi.org/10.3109/03630268508997044]

  197. Kister, J., Kiger, L., Francina, A., Hanny, P., Szymanowicz, A., Blouquit, Y., Prome, D., Galacteros, F., Delaunay, J., Wajcman, H. Hemoglobin Roanne (alpha94(G1)asp-to-glu): a variant of the alpha-1 beta-2 interface with an unexpected high oxygen affinity. Biochim. Biophys. Acta 1246: 34-38, 1995. [PubMed: 7811728] [Full Text: https://doi.org/10.1016/0167-4838(94)00190-r]

  198. Kleihauer, E. F., Reynolds, C. A., Dozy, A. M., Wilson, J. B., Moores, R. R., Berenson, M. P., Wright, C. S., Huisman, T. H. J. Hemoglobin Bibba or alpha(2)136 pro beta(2), an unstable alpha chain abnormal hemoglobin. Biochim. Biophys. Acta 154: 220-221, 1968. [PubMed: 5639009] [Full Text: https://doi.org/10.1016/0005-2795(68)90274-2]

  199. Knuth, A., Pribilla, W., Marti, H. R., Winterhalter, K. H. Hemoglobin Moabit: alpha 86 (F7) leu-to-arg: a new unstable abnormal hemoglobin. Acta Haemat. 61: 121-124, 1979. [PubMed: 108887] [Full Text: https://doi.org/10.1159/000207643]

  200. Koeffler, H. P., Sparkes, R. S., Stang, H., Mohandas, T. Regional assignment of genes for human alpha-globin and phosphoglycollate phosphatase to the short arm of chromosome 16. Proc. Nat. Acad. Sci. 78: 7015-7018, 1981. [PubMed: 6273902] [Full Text: https://doi.org/10.1073/pnas.78.11.7015]

  201. Kohne, E., Krause, M., Leupold, D., Kleihauer, E. Hemoglobin F Koelliker (alpha-2-minus 141 (HC3) arg-to-gamma-2): a modification of fetal hemoglobin. Hemoglobin 1: 257-266, 1977. [PubMed: 893128] [Full Text: https://doi.org/10.3109/03630267709003408]

  202. Konigsberg, W., Guidotti, G., Hill, R. J. The amino acid sequence of the alpha chain of human hemoglobin. J. Biol. Chem. 236: PC55-PC56, 1961. [PubMed: 13752954]

  203. Kraus, A. P., Miyaji, T., Iuchi, I., Kraus, L. M. Hemoglobin Memphis: a new variety of sickle cell anemia with symptoms due to an alpha-chain variant hemoglobin (alpha23 glu). J. Lab. Clin. Med. 66: 886-887, 1965.

  204. Kraus, A. P., Miyaji, T., Iuchi, I., Kraus, L. M. Hemoglobin Memphis, a new variant of sickle cell anemia. Trans. Assoc. Am. Phys. 80: 297-304, 1967. [PubMed: 6082248]

  205. Labie, D., Rosa, J. Sur une nouvelle hemoglobine anormale: l'hemoglobine J (alpha-54 glutamine a glutamique). Nouv. Rev. Franc. Hemat. 6: 426-430, 1966. [PubMed: 4225368]

  206. Labossiere, A., Vella, F. Hemoglobin I in a white family in Saskatoon. Clin. Biochem. 4: 104-113, 1971. [PubMed: 5128292] [Full Text: https://doi.org/10.1016/s0009-9120(71)90846-0]

  207. Lacan, P., Aubry, M., Couprie, N., Francina, A. Two new alpha chain variants: Hb Die (alpha-93(FG5)val-to-ala (alpha-1)) and Hb Beziers [alpha-99(G6)lys-to-asn (alpha-1)]. Hemoglobin 28: 59-63, 2004. [PubMed: 15008266] [Full Text: https://doi.org/10.1081/hem-120028888]

  208. Lacan, P., Francina, A., Souillet, G., Aubry, M., Couprie, N., Dementhon, L., Becchi, M. Two new alpha chain variants: Hb Boghe (alpha-58(E7)his-to-gln, alpha-2), a variant on the distal histidine, and Hb Charolles (alpha-103(G10)his-to-tyr, alpha-1). Hemoglobin 23: 345-352, 1999. [PubMed: 10569723] [Full Text: https://doi.org/10.3109/03630269909090750]

  209. Lacombe, C., Soria, J., Arous, N., Blouquit, Y., Bardakdjian, J., Riou, J., Galacteros, F. A new case of Hb Dagestan (alpha60(E9) lys-to-glu). Hemoglobin 11: 39-41, 1987. [PubMed: 3108202] [Full Text: https://doi.org/10.3109/03630268709036580]

  210. Lambridis, A. J., Ramsay, M., Jenkins, T. The haematological puzzle of Hb J Cape Town is partly solved. Brit. J. Haemat. 63: 363-367, 1986. [PubMed: 3718876] [Full Text: https://doi.org/10.1111/j.1365-2141.1986.tb05561.x]

  211. Langdown, J. V., Davidson, R. J. L., Williamson, D. A new alpha chain variant, Hb Turriff (alpha-99(G6)lys-to-glu): the interference of abnormal hemoglobins in Hb A(1c) determination. Hemoglobin 16: 11-17, 1992. [PubMed: 1634357] [Full Text: https://doi.org/10.3109/03630269209005671]

  212. Leder, A., Miller, H. I., Hamer, D. H., Seidman, J. G., Norman, B., Sullivan, M., Leder, P. Comparison of cloned mouse alpha- and beta-globin genes: conservation of intervening sequence locations and extragenic homology. Proc. Nat. Acad. Sci. 75: 6187-6191, 1978. [PubMed: 282635] [Full Text: https://doi.org/10.1073/pnas.75.12.6187]

  213. Leder, A., Swan, D., Ruddle, F., D'Eustachio, P. D., Leder, P. Dispersion of alpha-like globin genes of the mouse to three different chromosomes. Nature 293: 196-200, 1981. [PubMed: 6168916] [Full Text: https://doi.org/10.1038/293196a0]

  214. Leder, A., Wiener, E., Lee, M. J., Wickramasinghe, S. N., Leder, P. A normal beta-globin allele as a modifier gene ameliorating the severity of alpha-thalassemia in mice. Proc. Nat. Acad. Sci. 96: 6291-6295, 1999. [PubMed: 10339580] [Full Text: https://doi.org/10.1073/pnas.96.11.6291]

  215. Lee-Potter, J. P., Deacon-Smith, R. A., Lehmann, H., Robb, L. Haemoglobin Ferndown (alpha6 aspartic acid-to-valine). FEBS Lett. 126: 117-119, 1981. [PubMed: 7238857] [Full Text: https://doi.org/10.1016/0014-5793(81)81047-2]

  216. Lehmann, H., Carrell, R. W. Variations in the structure of human haemoglobins: with particular reference to the unstable haemoglobins. Brit. Med. Bull. 25: 14-23, 1969. [PubMed: 5782754] [Full Text: https://doi.org/10.1093/oxfordjournals.bmb.a070664]

  217. Lehmann, H., Carrell, R. W. Nomenclature of the alpha-thalassaemias. Lancet 323: 552-553, 1984. Note: Originally Volume I. [PubMed: 6199634] [Full Text: https://doi.org/10.1016/s0140-6736(84)90942-5]

  218. Lehmann, H. Haemoglobins and haemoglobinopathies. In: Lehmann, H.; Betke, K.: Haemoglobin-Colloquium. Stuttgart: Georg Thieme Verlag (pub.) 1962. Pp. 1-14.

  219. Li, H. J., Liu, D. X., Li, L., Cha, S. C., Wilson, J. B., Webber, B. B., Huisman, T. H. J. Hb Guangzhou-Hangzhou or alpha64(E13)asp-to-gly observed in members of a Chinese family living in Xinjiang. Hemoglobin 14: 441-444, 1990. [PubMed: 2283298] [Full Text: https://doi.org/10.3109/03630269009032004]

  220. Li, H., Zhao, X., Qin, F., Li, H., Li, L., He, X., Chang, X., Li, Z., Liang, K., Xing, F., Chang, W., Wong, R., Yang, I., Li, F., Zhang, T., Tian, R., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Abnormal hemoglobins in the Silk Road region of China. Hum. Genet. 86: 231-235, 1990. [PubMed: 2265836] [Full Text: https://doi.org/10.1007/BF00197711]

  221. Liang, C., Tao, H., Lo, H., Huang, S., Li, R., Wang, B. Hemoglobin Shuangfeng (alpha27 (B8) glu-to-lys): a new unstable hemoglobin variant. Hemoglobin 5: 691-700, 1981. [PubMed: 7338471] [Full Text: https://doi.org/10.3109/03630268108991837]

  222. Liang, C.-C., Chen, S., Yang, K., Jia, P., Ma, Y., Li, T., Ni, X., Wang, X., Deng, Q., Yao, S. Hemoglobin Beijing (alpha16 (A14) lys-to-asn): a new fast-moving hemoglobin variant. Hemoglobin 6: 629-633, 1982. [PubMed: 7161110]

  223. Liang, C.-C., Chen, S.-S., Jia, P.-C., Wang, L.-F., Luo, H.-Y., Liu, G.-Y., Liang, S., Lung, G.-F., Yu, C.-M., Zuang, L.-Z., Liant, B.-L., Tang, Z.-N. Hemoglobin Duan (alpha75(EF4) asp-to-ala), a new variant found in China. Hemoglobin 5: 481-486, 1981. [PubMed: 7275664]

  224. Liang, S., Tang, Z., Su, C., Lung, Q., Liang, R., Fei, Y. J., Kutlar, F., Wilson, J. B., Webber, B. B., Hu, H., Huisman, T. H. J. Hb Duan (alpha-75(EF4)asp-to-ala), Hb Westmead (alpha-122(H5)his-to-gln), and alpha-thalassemia-2 (-4.2 kb deletion) in a Chinese family. Hemoglobin 12: 13-21, 1988. [PubMed: 3384694] [Full Text: https://doi.org/10.3109/03630268808996878]

  225. Lie-Injo, L. E., Dozy, A. M., Kan, Y. W., Lopes, M., Todd, D. The alpha-globin gene adjacent to the gene for Hb Q (alpha 74 asp-to-his) is deleted, but not that adjacent to the gene for Hb G (alpha 30 glu-to-gln); three-fourths of the alpha-globin genes are deleted in Hb Q-alpha-thalassemia. Blood 54: 1407-1416, 1979. [PubMed: 508945]

  226. Lie-Injo, L. E., Pillay, R. P., Thuraisingham, V. Further cases of haemoglobin Q-H disease (Hb Q-alpha thalassemia). Blood 28: 830-839, 1966. [PubMed: 5960254]

  227. Lie-Injo, L. E., Sadono, (NI). Haemoglobin O (Buginese X) in Sulawesi. Brit. Med. J. 1: 1461-1462, 1958. [PubMed: 13536534] [Full Text: https://doi.org/10.1136/bmj.1.5085.1461]

  228. Liebhaber, S. A., Cash, F. E., Ballas, S. K. Human alpha-globin gene expression: the dominant role of the alpha(2)-locus in mRNA and protein synthesis. J. Biol. Chem. 261: 15327-15333, 1986. [PubMed: 3771577]

  229. Liebhaber, S. A., Cash, F. E. Locus assignment of alpha-globin structural mutations by hybrid-selected translation. J. Clin. Invest. 75: 64-70, 1985. [PubMed: 2981252] [Full Text: https://doi.org/10.1172/JCI111698]

  230. Liebhaber, S. A., Goossens, M. J., Kan, Y. W. Cloning and complete nucleotide sequence of human 5(prime)-alpha-globin gene. Proc. Nat. Acad. Sci. 77: 7054-7058, 1980. [PubMed: 6452630] [Full Text: https://doi.org/10.1073/pnas.77.12.7054]

  231. Liebhaber, S. A., Goossens, M., Kan, Y. W. Homology and concerted evolution at the alpha-1 and alpha-2 loci of human alpha-globin. Nature 290: 26-29, 1981. [PubMed: 7010180] [Full Text: https://doi.org/10.1038/290026a0]

  232. Liebhaber, S. A., Griese, E.-U., Weiss, I., Cash, F. E., Ayyub, H., Higgs, D. R., Horst, J. Inactivation of human alpha-globin gene expression by a de novo deletion located upstream of the alpha-globin gene cluster. Proc. Nat. Acad. Sci. 87: 9431-9435, 1990. [PubMed: 1701260] [Full Text: https://doi.org/10.1073/pnas.87.23.9431]

  233. Liebhaber, S. A., Rappaport, E. F., Cash, F. E., Ballas, S. K., Schwartz, E., Surrey, S. Hemoglobin I mutation encoded at both alpha-globin loci on the same chromosome: concerted evolution in the human genome. Science 226: 1449-1451, 1984. [PubMed: 6505702] [Full Text: https://doi.org/10.1126/science.6505702]

  234. Liu, G.-Y., Zhang, G.-X., Nie, S.-Y., Luo, H.-Y., Teng, Y.-Q., Liu, S.-P., Song, M., Son, L., Chen, S.-S., Jia, P.-C., Liang, C.-C. A case of hemoglobin Iwate (alpha87(F8)his-to-arg) in China. Hemoglobin 7: 279-282, 1983. [PubMed: 6874376]

  235. Lorkin, P. A., Charlesworth, D., Lehmann, H., Rahbar, S., Tuchinda, S., Lie-Injo, L. E. Two haemoglobins Q, alpha 74 (EF3) and alpha 75 (EF4) aspartic acid to histidine. Brit. J. Haemat. 19: 117-125, 1970. [PubMed: 5460202] [Full Text: https://doi.org/10.1111/j.1365-2141.1970.tb01607.x]

  236. Lorkin, P. A., Huntsman, R. G., Ager, J. A. M., Lehmann, H., Vella, F., Dakbre, P. D. Hemoglobin G (Norfolk): alpha 85 (F6) asp-to-asn. Biochim. Biophys. Acta 379: 22-27, 1975. [PubMed: 1115797] [Full Text: https://doi.org/10.1016/0005-2795(75)90004-5]

  237. Lu, Y.-Q., Liu, J.-F., Huang, C.-H., Huang, P.-Y., Hu, H.-L., Peng, X.-H., Chen, S.-S., Jia, P.-C., Yang, K.-G., Liang, C.-C., Zuo, C.-R. Hemoglobin Lille (alpha74 (EF3) asp-to-ala): the first instance in China. Hemoglobin 8: 523-527, 1984. [PubMed: 6500991]

  238. Maggio, A., Massa, A., Giampaolo, A., Mavilio, F., Tentori, L. Occurrence of Hb M Iwate (alpha 87 his-to-tyr) in an Italian carrier. Hemoglobin 5: 205-208, 1981. [PubMed: 7216821] [Full Text: https://doi.org/10.3109/03630268108996927]

  239. Malcorra-Azpiazu, J. J., Balda-Aguirre, M. I., Diaz-Chico, J. C., Kutlar, F., Kutlar, A., Wilson, J. B., Hu, H., Huisman, T. H. J. Hb Le Lamentin or alpha20 (B1) his-to-gln found in a Spanish family. Hemoglobin 12: 201-205, 1988. [PubMed: 3384713] [Full Text: https://doi.org/10.3109/03630268808998028]

  240. Mamalaki, A., Horanyi, M., Szelenyi, J., Moschonas, N. K. Locus assignment of human alpha-globin structural mutants by selective enzymatic amplification of alpha-1 and alpha-2-globin cDNAs. Hum. Genet. 85: 509-512, 1990. [PubMed: 2227935] [Full Text: https://doi.org/10.1007/BF00194226]

  241. Marengo-Rowe, A. J., Beale, D., Lehmann, H. New human hemoglobin variant from southern Arabia: G-Audhali (alpha-23(b4) glutamic acid-valine) and the variability of B4 in human haemoglobin. Nature 219: 1164-1166, 1968. [PubMed: 5675638] [Full Text: https://doi.org/10.1038/2191164b0]

  242. Marinucci, M., Mavilio, F., Massa, A., Gabbianelli, M., Fontanarosa, P. P., Camagna, A., Ignesti, C., Tentori, L. A new abnormal human hemoglobin: Hb Prato (alpha31 arg-to-ser). Biochim. Biophys. Acta 578: 534-540, 1979. [PubMed: 486536] [Full Text: https://doi.org/10.1016/0005-2795(79)90184-3]

  243. Marinucci, M., Mavilio, F., Tentori, L., Bestetti, A. Occurrence of Hb J Paris in an Italian family and recombination studies on the free abnormal alpha-chain. Hemoglobin 3: 465-469, 1979. [PubMed: 511586] [Full Text: https://doi.org/10.3109/03630267909002283]

  244. Marinucci, M., Mavilio, F., Tentori, L., D'Erasmo, F., Colapietro, A., De Stasio, G., Di Fonzo, S. A new human hemoglobin variant: Hb Bari (alpha 45(CD3) his-to-gln). Biochim. Biophys. Acta 622: 315-319, 1980. [PubMed: 7378457] [Full Text: https://doi.org/10.1016/0005-2795(80)90042-2]

  245. Marti, H. R., Beale, D., Lehmann, H. Haemoglobin Koelliker: a new acquired haemoglobin appearing after severe haemolysis: alpha-2 (minus 141 arg) beta-2. Acta Haemat. 37: 174-180, 1967. [PubMed: 4961849] [Full Text: https://doi.org/10.1159/000209067]

  246. Martin, G., Villegas, A., Calero, F., del Palacio, S., Lopez, J. C., Lopez, M., Espinos, D. Hb O Padova in a Spanish family. Acta Haemat. 84: 1-4, 1990. [PubMed: 2117321] [Full Text: https://doi.org/10.1159/000205018]

  247. Martinez, G., Lima, F., Residenti, C., Colombo, B. Hb J Camaguey alpha 141 (HC3) arg-to-gly: a new abnormal human hemoglobin. Hemoglobin 2: 47-52, 1978. [PubMed: 640841] [Full Text: https://doi.org/10.3109/03630267808999187]

  248. Masala, B., Manca, L., Stangoni, A., Cuccuru, G. B., Wilson, J. B., Webber, B. B., Kutlar, A., Huisman, T. H. J. Hb Sassari or alpha126 (H9) asp-to-his observed in a family from northern Sardinia. Hemoglobin 11: 373-378, 1987. [PubMed: 3667323] [Full Text: https://doi.org/10.3109/03630268709042855]

  249. Masala, B. Hemoglobinopathies in Sardinia. Hemoglobin 16: 331-351, 1992. [PubMed: 1517114] [Full Text: https://doi.org/10.3109/03630269208998879]

  250. Mavilio, F., Marinucci, M., Tentori, L., Fontanarosa, P. P., Rossi, U., Biagiotti, S. Hemoglobin Legnano (alpha 141 (HC3) arg-to-leu): a new abnormal human hemoglobin with high oxygen affinity. Hemoglobin 2: 249-259, 1978. [PubMed: 701083] [Full Text: https://doi.org/10.3109/03630267809007070]

  251. Mayne, E. E., Elder, G. E., Lappin, T. R. J., Ferguson, L. A. K. Hb M Iwate (alpha87 his-to-tyr): de novo mutation in an Irish family. Hemoglobin 10: 205-208, 1986. [PubMed: 3957697] [Full Text: https://doi.org/10.3109/03630268609046445]

  252. McDonald, M. J., Michalski, L. A., Turci, S. M., Guillette, R. A., Jue, D. L., Johnson, M. H., Moo-Penn, W. F. Structural, functional, and subunit assembly properties of Hb Attleboro [alpha138(H21)ser-to-pro], a variant possessing a site mutation at a critical C-terminal residue. Biochemistry 29: 173-178, 1990. [PubMed: 2108715] [Full Text: https://doi.org/10.1021/bi00453a023]

  253. Meloni, T., Pilo, G., Camardella, L., Cancedda, F., Lania, A., Pepe, G., Luzzatto, L. Coexistence of three hemoglobins with different alpha-chains in two unrelated children (with family studies indicating polymorphism in the number of alpha-globin genes in the Sardinian population). Blood 55: 1025-1032, 1980. [PubMed: 6155159]

  254. Meyering, C. A., Israels, A. L., Sebens, T., Huisman, T. H. J. Studies on the heterogeneity of hemoglobin. II. The heterogeneity of different human hemoglobin types in carboxymethyl cellulose and in amberlite irc-50 chromatography: quantitative aspects. Clin. Chim. Acta 5: 208-222, 1960.

  255. Miyaji, T., Iuchi, I., Yamamoto, K., Ohba, Y., Shibata, S. Amino acid substitution of hemoglobin Ube 2 (alpha 68 asp): an example of successful application of partial hydrolysis of peptide with 5 percent acetic acid. Clin. Chim. Acta 16: 347-352, 1967. [PubMed: 6035181] [Full Text: https://doi.org/10.1016/0009-8981(67)90298-7]

  256. Miyaji, T., Ueda, S., Shibata, S., Tamura, A., Sasaki, H. Further studies on the fingerprint of Hb M (Iwate). Acta Haemat. Jpn. 25: 169-175, 1962. [PubMed: 14474785]

  257. Miyashita, H., Hashimoto, K., Mohri, H., Ohokubo, T., Harano, T., Harano, K., Imai, K. Hb Kanagawa (alpha-40(C5)lys-to-met): a new alpha chain variant with an increased oxygen affinity. Hemoglobin 16: 1-10, 1992. [PubMed: 1634355] [Full Text: https://doi.org/10.3109/03630269209005670]

  258. Moi, P., Cash, F. E., Liebhaber, S. A., Cao, A., Pirastu, M. An initiation codon mutation (AUG-to-GUG) of the human alpha-1-globin gene: structural characterization and evidence for a mild thalassemic phenotype. J. Clin. Invest. 80: 1416-1421, 1987. [PubMed: 3680504] [Full Text: https://doi.org/10.1172/JCI113220]

  259. Moo-Penn, W. F., Baine, R. M., Jue, D. L., Johnson, M. H., McGuffey, J. E., Benson, J. M. Hemoglobin Evanston: alpha14(A12) trp-to-arg--a variant hemoglobin associated with alpha-thalassemia-2. Biochim. Biophys. Acta 747: 65-70, 1983. [PubMed: 6882779] [Full Text: https://doi.org/10.1016/0167-4838(83)90122-x]

  260. Moo-Penn, W. F., Bechtel, K. C., Johnson, M. H., Jue, D. L., Holland, S., Huff, C., Schmidt, R. M. Hemoglobin (Jackson) alpha 127 (H10) lys-to-asn. Am. J. Clin. Path. 66: 453-456, 1976. [PubMed: 949045] [Full Text: https://doi.org/10.1093/ajcp/66.2.453]

  261. Moo-Penn, W. F., Jue, D. L., Baine, R. M. Hemoglobin J Rovigo (alpha 53 ala-to-asp) in association with beta thalassemia. Hemoglobin 2: 443-445, 1978. [PubMed: 31339] [Full Text: https://doi.org/10.3109/03630267809007078]

  262. Moo-Penn, W. F., Jue, D. L., Johnson, M. H., McGuffey, J. E., Simpkins, H., Katz, J. Hemoglobin Queens: alpha34(B15) leu-to-arg structural and functional properties and its association with Hb E. Am. J. Hemat. 13: 323-327, 1982. [PubMed: 7158628] [Full Text: https://doi.org/10.1002/ajh.2830130408]

  263. Moo-Penn, W. F., Jue, D. L., Johnson, M. H., Therrell, B. L. Hemoglobin Swan River (alpha6(A4)asp-to-gly). Hemoglobin 11: 61-62, 1987. [PubMed: 3583768] [Full Text: https://doi.org/10.3109/03630268709036585]

  264. Moo-Penn, W. F., Swan, D. C., Hine, T. K., Baine, R. M., Jue, D. L., Benson, J. M., Johnson, M. H., Virshup, D. M., Zinkham, W. H. Hb Catonsville (glutamic acid inserted between pro-37 (C2) alpha and thr-38 (C3) alpha). J. Biol. Chem. 264: 21454-21457, 1989. [PubMed: 2574721]

  265. Moo-Penn, W. F., Therrell, B. L., Jr., Jue, D. L., Johnson, M. H. Hemoglobin Cubujuqui (alpha141 arg-to-ser): functional consequences of the alteration of the C-terminus of the alpha chain of hemoglobin. Hemoglobin 5: 715-724, 1981. [PubMed: 7338473] [Full Text: https://doi.org/10.3109/03630268108991839]

  266. Murayama, M. Chemical difference between normal human haemoglobin and haemoglobin-I. Nature 196: 276-277, 1962.

  267. Musumeci, S., Schiliro, G., Pizzarelli, G., Fischer, A., Russo, G. Thalassemia of intermediate severity resulting from the interaction between alpha- and beta-thalassemia. J. Med. Genet. 15: 448-451, 1978. [PubMed: 745216] [Full Text: https://doi.org/10.1136/jmg.15.6.448]

  268. Nakashima, H., Fujiyama, A., Kagiyama, S., Imamura, T. Genetic polymorphisms of gene conversion within the duplicated human alpha-globin loci. Hum. Genet. 84: 568-570, 1990. [PubMed: 1970975] [Full Text: https://doi.org/10.1007/BF00210811]

  269. Nakatsuji, T., Abraham, B. L., Lam, H., Wilson, J. B., Huisman, T. H. J. Hb Winnipeg or alpha75 (EF4) asp-to-tyr in a large Caucasian family living in Georgia, USA. Hemoglobin 7: 105-110, 1983. [PubMed: 6841125] [Full Text: https://doi.org/10.3109/03630268309038407]

  270. Nakatsuji, T., Miwa, S., Ohba, Y., Miyaji, T., Matsumoto, N., Matsuoka, I. Hemoglobin Tottori (alpha59 (E8) glycine-to-valine): a new unstable hemoglobin. Hemoglobin 5: 427-439, 1981. [PubMed: 7275660] [Full Text: https://doi.org/10.3109/03630268108991818]

  271. Nakatsuji, T., Wilson, J. B., Huisman, T. H. J. Hb Cordele alpha47 (CE5) asp-to-ala, a mildly unstable variant observed in black twins. Hemoglobin 8: 37-46, 1984. [PubMed: 6547117] [Full Text: https://doi.org/10.3109/03630268408996959]

  272. Ngiwsara, L., Srisomsap, C., Winichagoon, P., Fucharoen, S., Svasti, J. Two cases of compound heterozygosity for Hb Hekinan [alpha27(B8)glu-to-asp (alpha-1)] and alpha-thalassemia in Thailand. Hemoglobin 28: 145-150, 2004. [PubMed: 15182057] [Full Text: https://doi.org/10.1081/hem-120035913]

  273. Niazi, G. A., Efremov, G. D., Nikolov, N., Hunter, E., Jr., Huisman, T. H. J. Hemoglobin Strumica or alpha 112(G19) his-to-arg. (with an addendum: hemoglobin J-Paris-I, alpha 12(A10) ala-to-asp, in the same population). Biochim. Biophys. Acta 412: 181-186, 1975. [PubMed: 1191675] [Full Text: https://doi.org/10.1016/0005-2795(75)90350-5]

  274. North, M. L., Hassan, W., Thillet, J., Schwartz, M., Taubert, C., Ritter, J., Gandar, R., Rosa, J. Etude clinique et biologique d'un cas d'hemoglobine hybride S-Stanleyville II (alpha 78 asn-to-lys, beta 6 glu-to-val). Nouv. Rev. Franc. Hemat. 22: 235-241, 1980. [PubMed: 6782549]

  275. Nozari, G., Rahbar, S., Darbre, P., Lehmann, H. Hemoglobin Setif (alpha 94 (G1) asp-to-tyr) in Iran--a report of 9 cases. Hemoglobin 1: 289-291, 1977. [PubMed: 893131] [Full Text: https://doi.org/10.3109/03630267709003412]

  276. O'Brien, C., Gray, M. J., Jacobs, A. S. A survey of cord bloods for abnormal hemoglobin, with further observations on hemoglobin I (Burlington). Am. J. Obstet. Gynec. 88: 816-822, 1964. [PubMed: 14130347] [Full Text: https://doi.org/10.1016/0002-9378(64)90617-9]

  277. Ohba, Y., Fujisawa, K., Imai, K., Leowattana, W., Tani, Y., Ami, M., Miyaji, T. A new alpha chain variant Hb Tonosho [alpha110(G17)ala-to-thr]: subunit dissociation during cation exchange chromatography for Hb A1c assay. Hemoglobin 14: 413-422, 1990. [PubMed: 2283295] [Full Text: https://doi.org/10.3109/03630269009032001]

  278. Ohba, Y., Hattori, Y., Matsuoka, M., Miyaji, T., Fuyuno, K. Hb Kokura (alpha 47 (CE5) asp-to-gly): a slightly unstable variant. Hemoglobin 6: 69-74, 1982. [PubMed: 7068437] [Full Text: https://doi.org/10.3109/03630268208996936]

  279. Ohba, Y., Imai, K., Uenaka, R., Ami, M., Fujisawa, K., Itoh, K., Hirakawa, K., Miyaji, T. Hb Miyano or alpha41(C6)thr-to-ser: a new high oxygen affinity alpha chain variant found in an erythremic blood donor. Hemoglobin 13: 637-647, 1989. [PubMed: 2634665] [Full Text: https://doi.org/10.3109/03630268908998841]

  280. Ohba, Y., Miyaji, T., Matsuoka, M., Morito, M., Iuchi, I. Characterization of Hb Ube-4: alpha 116 (GH4) glu-to-ala. Hemoglobin 2: 181-186, 1978. [PubMed: 640856] [Full Text: https://doi.org/10.3109/03630267809074785]

  281. Ohba, Y., Miyaji, T., Matsuoka, M., Takeda, I., Fukuba, Y., Shibata, S., Ohkura, K. Hemoglobin Matsue-Oki: alpha 75 (EF4) aspartic acid-to-asparagine. Hemoglobin 1: 383-388, 1977. [PubMed: 893135] [Full Text: https://doi.org/10.3109/03630267708996896]

  282. Ohba, Y., Miyaji, T., Matsuoka, M., Yokoyama, M., Numakura, H., Nagata, K., Takebe, Y., Izumi, Y., Shibata, S. Hemoglobin Hirosaki (alpha 43(CE1) phe-to-leu), a new unstable variant. Biochim. Biophys. Acta 405: 155-160, 1975. [PubMed: 1182166] [Full Text: https://doi.org/10.1016/0005-2795(75)90325-6]

  283. Ohba, Y., Miyaji, T., Matsuoka, M., Yokoyama, M. Further studies on hemoglobin Hirosaki: demonstration of its presence at low concentration. Hemoglobin 2: 281-286, 1978. [PubMed: 701086] [Full Text: https://doi.org/10.3109/03630267809007073]

  284. Ohba, Y., Yamamoto, K., Kawata, R., Miyaji, T. Hyperunstable hemoglobin Toyama, alpha136 (H19) leu to arg detection and identification by in vitro biosynthesis with radioactive amino acids. Hemoglobin 11: 539-556, 1987. [PubMed: 2833478] [Full Text: https://doi.org/10.3109/03630268709027870]

  285. Ohba, Y., Yoshinaka, H., Hattori, Y., Matsuoka, M., Miyaji, T. Hemoglobin J Habana found in a cord blood of a Japanese. Hemoglobin 7: 327-329, 1983. [PubMed: 6618889] [Full Text: https://doi.org/10.3109/03630268309052714]

  286. Ojwang, P. J., Ogada, T., Webber, B. B., Wilson, J. B., Huisman, T. H. J. Hb Savaria or alpha(2)49(CE7) ser-to-arg in an indigenous female from Kenya. Hemoglobin 9: 197-200, 1985. [PubMed: 3839775] [Full Text: https://doi.org/10.3109/03630268508997004]

  287. Ooya, I., Kawamura, K., Seita, M., Hanada, M., Hitsumoto, A. Hemoglobin Kokura which was discovered in Kokura. (Abstract) 23rd General Meeting of the Japanese Society of Hematology, Kyoto 1961.

  288. Orkin, S. H. The duplicated human alpha globin lie close together in cellular DNA. Proc. Nat. Acad. Sci. 75: 5950-5954, 1978. [PubMed: 282616] [Full Text: https://doi.org/10.1073/pnas.75.12.5950]

  289. Orringer, E. P., Wilson, J. B., Huisman, T. H. J. Hemoglobin Chapel Hill or alpha 74 asp-to-gly. FEBS Lett. 65: 297-300, 1976. [PubMed: 8332] [Full Text: https://doi.org/10.1016/0014-5793(76)80133-0]

  290. Ostertag, W., Von Ehrenstein, G., Charache, S. Duplicated alpha-chain genes in Hopkins-2 haemoglobin of man and evidence for unequal crossing over between them. Nature N.B. 237: 90-94, 1972. [PubMed: 4503919] [Full Text: https://doi.org/10.1038/newbio237090a0]

  291. Overly, W. L., Rosenberg, A., Harris, J. W. Hemoglobin M (Reserve): studies on identification and characterization. J. Lab. Clin. Med. 69: 62-87, 1967. [PubMed: 6018071]

  292. Paglietti, E., Barella, S., Satta, S., Perra, C., Cao, A., Galanello, R. Hb Sassari [alpha-126(H9)asp-to-his] results from a GAC-to-CAC mutation in the alpha-1-globin gene. Hemoglobin 22: 65-67, 1998. [PubMed: 9494049] [Full Text: https://doi.org/10.3109/03630269809071518]

  293. Phillips, J. A., III, Scott, A. F., Smith, K. D., Young, K. E., Lightbody, K. L., Jiji, R. M., Kazazian, H. H., Jr. A molecular basis for hemoglobin-H diseases in American blacks. Blood 54: 1439-1445, 1979. [PubMed: 508947]

  294. Phillips, J. A., III, Vik, T. A., Scott, A. F., Young, K. E., Kazazian, H. H., Jr., Smith, K. D., Fairbanks, V. F., Koenig, H. M. Unequal crossing-over: a common basis of single alpha-globin genes in Asians and American blacks with hemoglobin-H disease. Blood 55: 1066-1069, 1980. [PubMed: 6246995]

  295. Pik, C., Tonz, O. Nature of haemoglobin M (Oldenburg). Nature 210: 1182, 1966. [PubMed: 5964191] [Full Text: https://doi.org/10.1038/2101182a0]

  296. Pobedimskaya, D. D., Molchanova, T. P., Huisman, T. H. J. Hb Ramona or alpha(2)24(B5)tyr-to-cys. Hemoglobin 18: 365-366, 1994. [PubMed: 7852094] [Full Text: https://doi.org/10.3109/03630269408996205]

  297. Pootrakul, S., Boonyarat, D., Kematorn, B., Suanpan, S., Wasi, P. Hemoglobin Thailand (alpha 56 (E5) lys-to-thr): a new abnormal human hemoglobin. Hemoglobin 1: 781-798, 1977. [PubMed: 604316] [Full Text: https://doi.org/10.3109/03630267709003907]

  298. Pootrakul, S., Dixon, G. H. Hemoglobin Mahidol: a new hemoglobin alpha-chain mutant. Canad. J. Biochem. 48: 1066-1078, 1970. [PubMed: 5475469] [Full Text: https://doi.org/10.1139/o70-168]

  299. Pootrakul, S., Kematorn, B., Na-Nakorn, S., Suanpan, S. A new haemoglobin variant. Haemoglobin Anantharaj (alpha 11 (A9) lysine-to-glutamic acid). Biochim. Biophys. Acta 405: 161-166, 1975. [PubMed: 1174563] [Full Text: https://doi.org/10.1016/0005-2795(75)90326-8]

  300. Pootrakul, S., Srichiyanont, S., Wasi, P., Suanpan, S. Hemoglobin Siam (alpha 15 arg): a new alpha-chain variant. Humangenetik 23: 199-204, 1974. [PubMed: 4135957]

  301. Popp, R. A., Lalley, P. A., Whitney, J. B., III, Anderson, W. F. Mouse alpha-like globin genes and alpha-globin-like pseudogenes are not syntenic. Proc. Nat. Acad. Sci. 78: 6362-6366, 1981. [PubMed: 6947235] [Full Text: https://doi.org/10.1073/pnas.78.10.6362]

  302. Poyart, C., Krishnamoorthy, R., Bursaux, E., Gacon, G., Labie, D. Structural and functional studies of haemoglobin Suresnes or alpha 141 (HC3) arg-to-his, a new high oxygen affinity mutant. FEBS Lett. 69: 103-107, 1976. [PubMed: 11123] [Full Text: https://doi.org/10.1016/0014-5793(76)80663-1]

  303. Prato, V., Gallo, E., Ricco, G., Mazza, U., Bianco, G., Lehmann, H. Haemolytic anaemia due to haemoglobin Torino. Brit. J. Haemat. 19: 105-115, 1970. [PubMed: 5453914] [Full Text: https://doi.org/10.1111/j.1365-2141.1970.tb01606.x]

  304. Prehu, C., Bost, M., Barro, C., Prome, D., Riou, J., Godart, C., Kister, J., Galacteros, F., Wajcman, H. Hb Roubaix (alpha-55(E4)val-to-leu): a new neutral hemoglobin variant involving the alpha-1 gene. Hemoglobin 23: 361-365, 1999. [PubMed: 10569725] [Full Text: https://doi.org/10.3109/03630269909090752]

  305. Prehu, C., Hanichi, A., Yapo, A. P., Claparols, C., Prome, D., Riou, J., Wajcman, H. Hb Douala [alpha-3(A1)ser-phe]: a new alpha-1 gene mutation in a Cameroonian woman heterozygous for Hb S and a 3.7 kb deletional alpha-thalassemia. Hemoglobin 25: 323-329, 2001. [PubMed: 11570726] [Full Text: https://doi.org/10.1081/hem-100105226]

  306. Priest, J. R., Watterson, J., Jones, R. T., Faassen, A. E., Hedlund, B. E. Mutant fetal hemoglobin causing cyanosis in a newborn. Pediatrics 83: 734-736, 1989. [PubMed: 2470017]

  307. Proudfoot, N. J., Maniatis, T. The structure of a human alpha-globin pseudogene and its relationship to alpha-globin gene duplication. Cell 21: 537-544, 1980. [PubMed: 7407925] [Full Text: https://doi.org/10.1016/0092-8674(80)90491-2]

  308. Pulsinelli, P. D., Perutz, M. F., Nagel, R. L. Structure of hemoglobin M (Boston), a variant with a five-coordinated ferric heme. Proc. Nat. Acad. Sci. 70: 3870-3874, 1973. [PubMed: 4521212] [Full Text: https://doi.org/10.1073/pnas.70.12.3870]

  309. Qualtieri, A., De Marco, E. V., Crescibene, L., Andreoli, V., Bagala, A., Scornaienchi, M., Brancati, C., Greco, C. M. Hb J-Wenchang-Wuming or alpha-11(A9)lys-to-gln in an Italian woman. Hemoglobin 19: 277-280, 1995. [PubMed: 8537231] [Full Text: https://doi.org/10.3109/03630269509005814]

  310. Quattrin, N., Ventruto, V. Hemoglobin Mexico in a Sardinian woman. Helv. Med. Acta 33: 388-394, 1967. [PubMed: 6038433]

  311. Rahbar, S., Ala, F., Akhavan, E., Nowzari, G., Shoa'i, I., Zamanianpoor, M. H. Two new hemoglobins: hemoglobin Perspolis (alpha 64 (E13) asp-to-tyr) and hemoglobin J Kurosh (alpha 19 (AB) ala-to-asp). Biochim. Biophys. Acta 427: 119-125, 1976. [PubMed: 1259994] [Full Text: https://doi.org/10.1016/0005-2795(76)90290-7]

  312. Rahbar, S., Kinderlerer, J. L., Lehmann, H. Haemoglobin L Persian Gulf: alpha 57 (E6) glycine leads to arginine. Acta Haemat. 42: 169-175, 1969. [PubMed: 4982774] [Full Text: https://doi.org/10.1159/000208776]

  313. Rahbar, S., Mahdavi, N., Nowzari, G., Mostafavi, I. Hemoglobin Arya: alpha 47, aspartic acid to asparagine. Biochim. Biophys. Acta 386: 525-529, 1975. [PubMed: 1138883] [Full Text: https://doi.org/10.1016/0005-2795(75)90295-0]

  314. Rahbar, S., Nowzari, G., Daneshmand, P. Hemoglobin Daneshgah-Tehran alpha 72 (EF1) histidine-to-arginine. Nature N.B. 245: 268-269, 1973. [PubMed: 4518991] [Full Text: https://doi.org/10.1038/newbio245268a0]

  315. Ranney, H. M., O'Brien, C., Jacobs, A. S. An abnormal human foetal haemoglobin with an abnormal alpha-polypeptide chain. Nature 194: 743-745, 1962. [PubMed: 14490283] [Full Text: https://doi.org/10.1038/194743a0]

  316. Raper, A. B. Unusual haemoglobin variant in a Gujerati Indian. Brit. Med. J. 1: 1285-1286, 1957. [PubMed: 13426607] [Full Text: https://doi.org/10.1136/bmj.1.5030.1285]

  317. Reynolds, C. A., Huisman, T. H. J. Hemoglobin Russ or alpha-2 (51 arg) beta-2. Biochim. Biophys. Acta 130: 541-543, 1966. [PubMed: 5972865]

  318. Rhoda, M.-D., Martin, J., Blouquit, Y., Garel, M.-C., Edelstein, S. J., Rosa, J. Sickle cell hemoglobin fiber formation strongly inhibited by the Stanleyville II mutation (alpha78 asn-to-lys). Biochem. Biophys. Res. Commun. 111: 8-13, 1983. [PubMed: 6681956] [Full Text: https://doi.org/10.1016/s0006-291x(83)80109-0]

  319. Romao, L., Cash, F., Weiss, I., Liebhaber, S., Pirastu, M., Galanello, R., Loi, A., Paglietti, E., Ioannou, P., Cao, A. Human alpha-globin gene expression is silenced by terminal truncation of chromosome 16p beginning immediately 3-prime of the zeta-globin gene. Hum. Genet. 89: 323-328, 1992. [PubMed: 1351037] [Full Text: https://doi.org/10.1007/BF00220551]

  320. Romero, M. J., Garrido, M. L., Abril, E., Garrido, F., de Pablos, J. Ma. Detection of Hb J-Camaguey (alpha-141(HC3)arg-to-gly) in three Spanish families. Hemoglobin 19: 287-289, 1995. [PubMed: 8537233] [Full Text: https://doi.org/10.3109/03630269509005816]

  321. Rosa, J., Maleknia, N., Vergos, D., Dunet, R. Une nouvelle hemoglobine anormale: l'hemoglobine J(alpha-Paris) 12 ala-a-asp. Nouv. Rev. Franc. Hemat. 6: 423-426, 1966. [PubMed: 4225453]

  322. Rubin, E. M., Kan, Y. W. A simple sensitive prenatal test for hydrops fetalis caused by alpha-thalassaemia. Lancet 325: 75-77, 1985. Note: Originally Volume I. [PubMed: 2857027] [Full Text: https://doi.org/10.1016/s0140-6736(85)91967-1]

  323. Rucknagel, D. L., Page, E. B., Jensen, W. N. Hemoglobin I: an inherited hemoglobin anomaly. Blood 10: 999-1009, 1955. [PubMed: 13260359]

  324. Saenz, G. F., Alvarado, M., Arroyo, G., Alfaro, E., Montero, G., Jimenez, J., Martinez, G., Lima, F., Colombo, B. Hemoglobin Suresnes in a Costa-Rican woman of Spanish-Indian ancestry. Hemoglobin 2: 383-387, 1978. [PubMed: 701092] [Full Text: https://doi.org/10.3109/03630267809005347]

  325. Saenz, G. F., Elizondo, J., Alvarado, M. A., Atmetlla, F., Arroyo, G., Martinez, G., Lima, F., Colombo, B. Chemical characterization of a new haemoglobin variant Haemoglobin J (Cubujuqui) (alpha 141 (HC3) arg-to-ser). Biochim. Biophys. Acta 494: 48-50, 1977. [PubMed: 901812] [Full Text: https://doi.org/10.1016/0005-2795(77)90133-7]

  326. Sanna, M. T., Giardina, B., Scatena, R., Pellegrini, M., Olianas, A., Manca, L., Masala, B., Castagnola, M., Corda, M. Functional alterations in adult and fetal hemoglobin Sassari asp-alpha-126(H9)-to-his: the role of alpha-1-alpha-2 contact. J. Biol. Chem. 269: 18338-18342, 1994. [PubMed: 7518430]

  327. Sansone, G., Centa, A., Sciarratta, V., Gallo, E., Lehmann, H. Haemoglobin O Indonesia (alpha116 glu-to-lys) in an Italian family. Acta Haemat. 43: 40-47, 1970. [PubMed: 4986187] [Full Text: https://doi.org/10.1159/000208712]

  328. Schiliro, G., Russo, A., Azzia, N., Digiacomo, M. S., Musumeci, S., Russo, G. Hemoglobin Koelliker (alpha minus 141 arg) in favism. Acta Haemat. 67: 229, 1982. [PubMed: 6805217] [Full Text: https://doi.org/10.1159/000207065]

  329. Schiliro, G., Russo-Mancuso, G., Dibenedetto, S. P., Samperi, P., Di Cataldo, A., Ragusa, R., Testa, R. Six rare hemoglobin variants found in Sicily. Hemoglobin 15: 431-437, 1991. [PubMed: 1802885] [Full Text: https://doi.org/10.3109/03630269108998862]

  330. Schmidt, R. M., Bechtel, K. C., Moo-Penn, W. F. Hemoglobin Q(India), alpha 64 (E13) asp-to-his, and beta thalassemia in a Canadian family. Am. J. Clin. Path. 66: 446-448, 1976. [PubMed: 949043] [Full Text: https://doi.org/10.1093/ajcp/66.2.446]

  331. Schnedl, W. J., Reisinger, E. C., Katzensteiner, S., Lipp, R. W., Schreiber, F., Hopmeier, P., Krejs, G. J. Haemoglobin O Padova and falsely low haemoglobin A(1c) in a patient with type I diabetes. J. Clin. Path. 50: 434-446, 1997. [PubMed: 9215129] [Full Text: https://doi.org/10.1136/jcp.50.5.434]

  332. Schneider, R. G., Alperin, J. B., Beale, D., Lehmann, H. Hemoglobin I in an American Negro family: structural and hematologic studies. J. Lab. Clin. Med. 68: 940-946, 1966. [PubMed: 5926190]

  333. Schneider, R. G., Alperin, J. B., Lehmann, H. Sickling tests. Pitfalls in performance and interpretation. JAMA 202: 419-421, 1967. [PubMed: 6072501] [Full Text: https://doi.org/10.1001/jama.202.5.419]

  334. Schneider, R. G., Atkins, R. J., Hosty, T. S., Tomlin, G., Casey, R., Lehmann, P. A., Lorkin, P. A., Nagai, K. Haemoglobin Titusville (alpha 94 asp-to-asn): a new haemoglobin with a lowered affinity for oxygen. Biochim. Biophys. Acta 400: 365-373, 1975. [PubMed: 1164512]

  335. Schneider, R. G., Brimhall, B., Jones, R. T., Bryant, R., Mitchell, C. B., Goldberg, A. I. Hb Ft. Worth: alpha27glu-to-gly--a variant present in unusually low concentration. Biochim. Biophys. Acta 243: 164-169, 1971. [PubMed: 5122655] [Full Text: https://doi.org/10.1016/0005-2795(71)90072-9]

  336. Schneider, R. G., Hightower, B., Carpentieri, U., Duerst, M. L., Shih, T. B., Jones, R. T. Hemoglobin Oleander (alpha116 (GH4) glu-to-gln): structural and functional characterization. Hemoglobin 6: 465-480, 1982. [PubMed: 6129203] [Full Text: https://doi.org/10.3109/03630268209083760]

  337. Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., Eskiw, C. H., Luo, Y., Wei, C.-L., Ruan, Y., Bieker, J. J., Fraser, P. Preferential associations between co-regulated genes reveal a transcription interactome in erythroid cells. Nature Genet. 42: 53-61, 2010. [PubMed: 20010836] [Full Text: https://doi.org/10.1038/ng.496]

  338. Schroeder, W. A., Jones, R. T. Some aspects of the chemistry and function of human and animal hemoglobins. Fortschr. Chem. Org. Naturst. 23: 113-194, 1965. [PubMed: 5324987] [Full Text: https://doi.org/10.1007/978-3-7091-7139-4_4]

  339. Schroeder, W. A., Shelton, J. B., Shelton, J. R., Powars, D. Hemoglobin Sunshine Seth (alpha94 asp-to-his). Hemoglobin 3: 145-159, 1979. [PubMed: 478976] [Full Text: https://doi.org/10.3109/03630267908998910]

  340. Schwartz, I. R., Atwater, J., Repplinger, E., Tocantins, L. M. Sickling of erythrocytes with I-A electrophoretic haemoglobin pattern. Fed. Proc. 16: 115, 1957.

  341. Sciarratta, G. V., Ivaldi, G., Molaro, G. L., Sansone, G., Salkie, M. L., Wilson, J. B., Reese, A. L., Huisman, T. H. J. The characterization of hemoglobin Manitoba or alpha(2)102(G9)ser-to-arg and hemoglobin Contaldo or alpha(2)103(G10)his-to-arg by high performance liquid chromatography. Hemoglobin 8: 169-181, 1984. [PubMed: 6547932] [Full Text: https://doi.org/10.3109/03630268408991710]

  342. Scott, A. F., Phillips, J. A., III, Young, K. E., Kazazian, H. H., Jr., Smith, K. D., Charache, S., Clegg, J. B. The molecular basis of hemoglobin Grady. Am. J. Hum. Genet. 33: 129-133, 1981. [PubMed: 6258429]

  343. Sellaye, M., Blouquit, Y., Galacteros, F., Arous, N., Monplaisir, N., Rhoda, M. D., Braconnier, F., Rosa, J. A new silent hemoglobin variant in a black family from French West Indies: hemoglobin Le Lamentin alpha20 his-to-gln. FEBS Lett. 145: 128-130, 1982. [PubMed: 7128817] [Full Text: https://doi.org/10.1016/0014-5793(82)81220-9]

  344. Shelton, J. B., Shelton, J. R., Schroeder, W. A., Powars, D. R. Hb Aztec or alpha76(EF5) met-to-thr: detection of a silent mutant by high performance liquid chromatography. Hemoglobin 9: 325-332, 1985. [PubMed: 3935608] [Full Text: https://doi.org/10.3109/03630268508997008]

  345. Shibata, S., Iuchi, I., Miyaji, T., Ueda, S. Spectroscopic characterization of hemoglobin M (Iwate) and hemoglobin M (Kurume), the two variants of hemoglobin M found in Japan. Acta Haemat. Jpn. 24: 477-485 and 486-494, 1961. [PubMed: 13911805]

  346. Shibata, S., Miyaji, T., Ohba, Y. Abnormal hemoglobins in Japan. Hemoglobin 4: 395-408, 1980. [PubMed: 6998928] [Full Text: https://doi.org/10.3109/03630268008996220]

  347. Shibata, S., Tamura, A., Iuchi, I., Takahashi, H. Hemoglobin M-1. Demonstration of a new abnormal hemoglobin in hereditary nigremia. Acta Haemat. Jpn. 23: 96-104, 1960.

  348. Shibata, S., Ueda, S., Miyaji, T., Imamura, T. Hemoglobinopathies in Japan. Hemoglobin 5: 509-515, 1981. [PubMed: 7275668] [Full Text: https://doi.org/10.3109/03630268108991829]

  349. Shibata, S. Hereditary nigremia (geneticobiochemical aspects). Jpn. J. Hum. Genet. 9: 193-206, 1964. [PubMed: 5896606]

  350. Shimasaki, S., Iuchi, I., Hidaka, K., Mizuta, W. The survey of abnormal hemoglobin in Kobe district. Jpn. J. Hum. Genet. 28: 127-128, 1983.

  351. Shimasaki, S. A new hemoglobin variant, hemoglobin Nunobiki (alpha141 (HC3) arg-to-cys): notable influence of the carboxy-terminal cysteine upon various physico-chemical characteristics of hemoglobin. J. Clin. Invest. 75: 695-701, 1985. [PubMed: 3973024] [Full Text: https://doi.org/10.1172/JCI111749]

  352. Shimizu, A., Hayashi, A., Yamamura, Y., Tsugita, A., Kitayama, K. The structural study on a new hemoglobin variant, Hb M (Osaka). Biochim. Biophys. Acta 97: 472-482, 1965. [PubMed: 14323593] [Full Text: https://doi.org/10.1016/0304-4165(65)90159-5]

  353. Shimizu, A., Tsugita, A., Hayashi, A., Yamamura, Y. The primary structure of hemoglobin M (Iwate). Biochim. Biophys. Acta 107: 270-277, 1965. [PubMed: 5880555] [Full Text: https://doi.org/10.1016/0304-4165(65)90134-0]

  354. Shin, M.-C., Chen, C.-M., Liu, S.-C., Huang, C.-H., Lee, T.-P., Chan, W.-L., Chang, J.-G. Hb UBE-2 in a Taiwanese subject: an A-to-G substitution at codon 68 of the alpha-2-globin gene. Hemoglobin 26: 99-101, 2002. [PubMed: 11939522] [Full Text: https://doi.org/10.1081/hem-120002949]

  355. Silvestroni, E., Bianco, I., Brancati, C. Haemoglobins N and P in Italian families. Nature 200: 658-659, 1963. [PubMed: 14109943] [Full Text: https://doi.org/10.1038/200658a0]

  356. Simmers, R. N., Mulley, J. C., Hyland, V. J., Callen, D. F., Sutherland, G. R. Mapping the human alpha globin gene complex to 16p13.2-pter. J. Med. Genet. 24: 761-766, 1987. [PubMed: 3430555] [Full Text: https://doi.org/10.1136/jmg.24.12.761]

  357. Smith, E. W., Torbert, J. V. Study of two abnormal hemoglobins with evidence for a new genetic locus for hemoglobin formation. Bull. Johns Hopkins Hosp. 102: 38-45, 1958. [PubMed: 13500096]

  358. Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Molec. Biol. 98: 503-517, 1975. [PubMed: 1195397] [Full Text: https://doi.org/10.1016/s0022-2836(75)80083-0]

  359. Spivak, V. A., Molchanova, T. P., Ermakov, N. V., Tokarev, Y. N., Martinez, G., Szelenyi, J., Horanyi, M., Foldi, J., Hollan, S., Kazieva, H., Shamov, I. A. A new hemoglobin variant: Hb Dagestan alpha60(E9) lys-to-glu. Hemoglobin 5: 133-138, 1981. [PubMed: 6783600] [Full Text: https://doi.org/10.3109/03630268108996919]

  360. Straub, A. C., Lohman, A. W., Billaud, M., Johnstone, S. R., Dwyer, S. T., Lee, M. Y., Bortz, P. S., Best, A. K., Columbus, L., Gaston, B., Isakson, B. E. Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature 491: 473-477, 2012. [PubMed: 23123858] [Full Text: https://doi.org/10.1038/nature11626]

  361. Suarez, C. R., Jue, D. L., Moo-Penn, W. F. Hemoglobin Savaria--alpha49(CE7)ser-to-arg in the United States. Hemoglobin 9: 627-629, 1985. [PubMed: 3937825] [Full Text: https://doi.org/10.3109/03630268508997045]

  362. Sugihara, J., Imamura, T., Kagimoto, M., Matsuo, T., Yamada, H., Imoto, T., Yanase, T. A new electrophoretic variant of hemoglobin (Munakata) in which a lysine residue is replaced by a methionine residue at position 90 of the alpha-chain. Biochim. Biophys. Acta 744: 119-120, 1983. [PubMed: 6403040] [Full Text: https://doi.org/10.1016/0167-4838(83)90349-7]

  363. Sugihara, J., Imamura, T., Yamada, H., Imoto, T., Matsuo, T., Sumida, I., Yanase, T. A new electrophoretic variant of hemoglobin (Ogi) in which a leucine residue is replaced by an arginine residue at position 34 of the alpha-chain. Biochim. Biophys. Acta 701: 45-48, 1982. [PubMed: 7055587] [Full Text: https://doi.org/10.1016/0167-4838(82)90310-7]

  364. Sukumaran, P. K., Merchant, S. M., Desai, M. P., Wiltshire, B. G., Lehmann, H. Haemoglobin Q India (alpha-64 (E13) aspartic acid to histidine). Associated with beta-thalassemia observed in three Sindhi families. J. Med. Genet. 9: 436-442, 1972. [PubMed: 4646552] [Full Text: https://doi.org/10.1136/jmg.9.4.436]

  365. Sukumaran, P. K., Pik, C. Some observations on haemoglobin L(Bombay). Biochim. Biophys. Acta 104: 290-292, 1965. [PubMed: 5840408] [Full Text: https://doi.org/10.1016/0304-4165(65)90249-7]

  366. Sumida, I., Ohta, Y., Imamura, T., Yanase, T. Hemoglobin Sawara: alpha 6 (A4) aspartic acid leads to alanine. Biochim. Biophys. Acta 322: 23-26, 1973. [PubMed: 4744335] [Full Text: https://doi.org/10.1016/0005-2795(73)90169-4]

  367. Sumida, I. Studies of abnormal hemoglobins in western Japan: frequency of visible hemoglobin variants, and chemical characterization of hemoglobin Sawara (alpha26ala-beta2) and hemoglobin Mugino (Hb L Ferrara; alpha247gly-beta2). Jpn. J. Hum. Genet. 19: 343-363, 1975. [PubMed: 1241593]

  368. Suzuki, T., Hayashi, A., Yamamura, Y., Enoki, Y., Tyuma, I. Functional abnormality of hemoglobin M (Osaka). Biochem. Biophys. Res. Commun. 19: 691-695, 1965. [PubMed: 5840695] [Full Text: https://doi.org/10.1016/0006-291x(65)90312-8]

  369. Szelenyi, J. G., Horanyi, M., Foldi, J., Hudacsek, J., Istvan, L., Hollan, S. R. A new hemoglobin variant in Hungary: Hb Savaria-alpha 49 (CE7) ser-to-arg. Hemoglobin 4: 27-38, 1980. [PubMed: 7353957] [Full Text: https://doi.org/10.3109/03630268009042371]

  370. Tamura, A. Black blood disease. Jpn. J. Hum. Genet. 9: 183-192, 1964. [PubMed: 5896605]

  371. Thillet, J., Blouquit, Y., Perrone, F., Rosa, J. Hemoglobin Pontoise: alpha 63 ala-to-asp (E12): a new fast moving variant. Biochim. Biophys. Acta 491: 16-22, 1977. [PubMed: 849454] [Full Text: https://doi.org/10.1016/0005-2795(77)90036-8]

  372. Thompson, R. B., Rau, P. J., Odom, J., Bell, W. N. The sickling phenomenon in a white male without Hb-S. Acta Haemat. 34: 347-353, 1965. [PubMed: 4956511] [Full Text: https://doi.org/10.1159/000209459]

  373. Tonz, O., Simon, H. A., Hasselfeld, W. Untersuchung einer grossen Haemoglobin-M-Sippe. Entdeckung eines neuen Blutfarbstoffes: Hb M-Oldenburg. Schweiz. Med. Wschr. 92: 1311-1313, 1962. [PubMed: 13985279]

  374. Trabuchet, G., Morle, F., Verdier, G., Godet, J., Benabadji, M., Nigon, V. M. Mapping the alpha-globin genes in Hb J Mexico carriers. Hum. Genet. 62: 164-166, 1982. [PubMed: 6298095] [Full Text: https://doi.org/10.1007/BF00282308]

  375. Traeger-Synodinos, J., Harteveld, C. L., Kanavakis, E., Giordano, P. C., Kattamis, C., Bernini, L. F. Hb Aghia Sophia (alpha-62(E11)val-to-0 (alpha-1)), an 'in-frame' deletion causing alpha-thalassemia. Hemoglobin 23: 317-324, 1999. [PubMed: 10569720] [Full Text: https://doi.org/10.3109/03630269909090747]

  376. Trincao, C., de Melo, J. M., Lorkin, P. A., Lehmann, H. Haemoglobin J Paris in the south of Portugal (Algarve). Acta Haemat. 39: 291-298, 1968. [PubMed: 4971935] [Full Text: https://doi.org/10.1159/000208973]

  377. Turbpaiboon, C., Svasti, S., Sawangareetakul, P., Winichagoon, P., Srisomsap, C., Siritanaratkul, N., Fucharoen, S., Wilairat, P., Svasti, J. Hb Siam (alpha-15(A13)gly-to-arg(alpha-1) (GGT-to-CGT)) is a typical alpha chain hemoglobinopathy without an alpha-thalassemic effect. Hemoglobin 26: 77-81, 2002. [PubMed: 11939517] [Full Text: https://doi.org/10.1081/hem-120002944]

  378. Van Ros, G., Beale, D., Lehmann, H. Hemoglobin Stanleyville-II (alpha 78 asparagine to lysine). Brit. Med. J. 4: 92-93, 1968. [PubMed: 5696551] [Full Text: https://doi.org/10.1136/bmj.4.5623.92]

  379. Vandenplas, S., Higgs, D. R., Nicholls, R. D., Bester, A. J., Mathew, C. G. P. Characterization of a new alpha(0) thalassemia defect in the South African population. Brit. J. Haemat. 66: 539-542, 1987. [PubMed: 3663510] [Full Text: https://doi.org/10.1111/j.1365-2141.1987.tb01341.x]

  380. Vasseur, C., Blouquit, Y., Kister, J., Prome, D., Kavanaugh, J. S., Rogers, P. H., Guillemin, C., Arnone, A., Galacteros, F., Poyart, C., Rosa, J., Wajcman, H. Hemoglobin Thionville: an alpha-chain variant with a substitution of a glutamate for valine at NA-1 and having an acetylated methionine NH(2) terminus. J. Biol. Chem. 267: 12682-12691, 1992. [PubMed: 1618774]

  381. Vasseur, C., Guillemin, C., Galacteros, F., Wajcman, H. Hemoglobin Thionville: an alpha chain variant with substitution of a glutamic residue for valine NA-1 and having an extended N-terminus. (Abstract) Blood 76 (suppl. 1): 78a, 1990.

  382. Vella, F., Casey, R., Lehmann, H., Labossiere, A., Jones, T. G. Haemoglobin Ottawa: alpha 15 gly-to-arg. Biochim. Biophys. Acta 336: 25-29, 1974.

  383. Vella, F., Charlesworth, D., Lorkin, P. A., Lehmann, H. Hemoglobin Broussais: alpha 90 lys replaced by asn. Canad. J. Biochem. 48: 908-910, 1970. [PubMed: 5452727]

  384. Vella, F., Galbraith, P., Wilson, J. B., Wong, S. C., Folger, G. C., Huisman, T. H. J. Hemoglobin St. Claude or alpha 127 (H10) lys-to-thr. Biochim. Biophys. Acta 365: 318-323, 1974. [PubMed: 4429670] [Full Text: https://doi.org/10.1016/0005-2795(74)90003-8]

  385. Vella, F., Wells, R. H. C., Ager, J. A. M., Lehmann, H. A haemoglobinopathy involving haemoglobin H and a new (Q) haemoglobin. Brit. Med. J. 1: 752-755, 1958. [PubMed: 13510789] [Full Text: https://doi.org/10.1136/bmj.1.5073.752]

  386. Vella, F., Wiltshire, B., Lehmann, H., Galbraith, P. Hemoglobin Winnipeg. Clin. Biochem. 6: 66-70, 1973. [PubMed: 4728965] [Full Text: https://doi.org/10.1016/s0009-9120(73)80014-1]

  387. Vettore, L., De Sandre, G., Di Iorio, E. E., Winterhalter, K. H., Lang, A., Lehmann, H. A new abnormal hemoglobin O Padova, alpha 30 (B11) glu-to-lys, and a dyserythropoietic anemia with erythroblastic multinuclearity coexisting in the same patient. Blood 44: 869-878, 1974. [PubMed: 4429803]

  388. Virshup, D. M., Zinkham, W. H., Hine, T., Baine, R. M., Jue, D. L., Moo-Penn, W. F. Hemoglobin Catonsville: an unstable, high affinity variant with an insertion of glutamic acid between residues 37(pro) and 38 (thr) in the alpha chain. (Abstract) Blood 72 (suppl.): 75a, 1988.

  389. Wainscoat, J. S., Higgs, D. R., Kanavakis, E., Cao, A., Georgiou, D., Clegg, J. B., Weatherall, D. J. Association of two DNA polymorphisms in the alpha-globin gene cluster: implications for genetic analysis. Am. J. Hum. Genet. 35: 1086-1089, 1983. [PubMed: 6316779]

  390. Wainscoat, J. S., Kanavakis, E., Weatherall, D. J., Walker, J., Holmes-Seidle, M., Bobrow, M., Donnison, A. B. Regional localisation of the human alpha-globin genes. (Letter) Lancet 318: 301-302, 1981. Note: Originally Volume II. [PubMed: 6114338] [Full Text: https://doi.org/10.1016/s0140-6736(81)90542-0]

  391. Wajcman, H., Belkhodja, O., Labie, D. Hb Setif: G1 (94) alpha--asp-to-tyr. A new chain hemoglobin variant with substitution of the residue involved in a hydrogen bond between unlike subunits. FEBS Lett. 27: 298-300, 1972. [PubMed: 4667378] [Full Text: https://doi.org/10.1016/0014-5793(72)80645-8]

  392. Wajcman, H., Blouquit, Y., Gombaud-Saintonge, G., Riou, J., Galacteros, F. HB Fontainebleau (alpha21(B2)ala-to-pro), a new silent mutant hemoglobin. Hemoglobin 13: 421-429, 1989. [PubMed: 2599878] [Full Text: https://doi.org/10.3109/03630268908998081]

  393. Wajcman, H., Blouquit, Y., Lahary, A., Soummer, A. M., Groff, P., Bardakdjian, J., Prehu, C., Riou, J., Godard, C., Galacteros, F. Three new neutral alpha chain variants: Hb Bois Guillaume (alpha-65(E14)ala-to-val), Hb Mantes-La-Jolie (alpha-79(EF8)ala-to-thr), and Hb Mosella (alpha-111(G18)ala-to-thr). Hemoglobin 19: 281-286, 1995. [PubMed: 8537232] [Full Text: https://doi.org/10.3109/03630269509005815]

  394. Wajcman, H., Blouquit, Y., Riou, J., Kister, J., Poyart, C., Soria, J., Galacteros, F. A new hemoglobin variant found during investigations of diabetes mellitus: Hb Pavie [alpha-135(H18)val-to-glu]. Clin. Chim. Acta 188: 39-48, 1990. [PubMed: 2347082] [Full Text: https://doi.org/10.1016/0009-8981(90)90144-h]

  395. Wajcman, H., Blouquit, Y., Vasseur, C., Le Querrec, A., Laniece, M., Melevendi, C., Rasore, A., Galacteros, F. Two new human hemoglobin variants caused by unusual mutational events: Hb Zaire contains a five residue repetition within the alpha-chain and Hb Duino has two residues substituted in the beta-chain. Hum. Genet. 89: 676-680, 1992. [PubMed: 1511986] [Full Text: https://doi.org/10.1007/BF00221961]

  396. Wajcman, H., Bost, M., Blouquit, Y., Prehu, C., Riou, J., Galacteros, F. Two new alpha chain variants found during glycated hemoglobin screening: Hb Tatras (alpha7(A5)lys-to-asn) and Hb Lisbon (alpha23(B4)glu-to-asp). Hemoglobin 18: 427-432, 1994. [PubMed: 7713746] [Full Text: https://doi.org/10.3109/03630269409045774]

  397. Wajcman, H., Dahmane, M., Prehu, C., Costes, B., Prome, D., Arous, N., Bardakdjian-Michau, J., Riou, J., Ayache, K. C., Godart, C., Galacteros, F. Haemoglobin J-Biskra: a new mildly unstable alpha-1 gene variant with a deletion of eight residues (alpha-50-57, alpha-51-58 or alpha-52-59) including the distal histidine. Brit. J. Haemat. 100: 401-406, 1998. [PubMed: 9488635] [Full Text: https://doi.org/10.1046/j.1365-2141.1998.00566.x]

  398. Wajcman, H., Delaunay, J., Francina, A., Rosa, J., Galacteros, F. Hemoglobin Nouakchott [alpha114(GH2)pro-to-leu]: a new hemoglobin variant displaying an unusual increase in hydrophobicity. Biochim. Biophys. Acta 998: 25-31, 1989. [PubMed: 2790052] [Full Text: https://doi.org/10.1016/0167-4838(89)90114-3]

  399. Wajcman, H., Elion, J., Boissel, J. P., Labie, D., Jos, J., Girot, R. A silent hemoglobin variant: hemoglobin Necker Enfants-Malades alpha 20 (B1) his-to-tyr. Hemoglobin 4: 177-184, 1980. [PubMed: 7390863] [Full Text: https://doi.org/10.3109/03630268009042384]

  400. Wajcman, H., Gombaud-Saintonge, G., Galacteros, F., Martha, M., Vertongen, F. Hb Belliard (alpha56 (E5) lys-to-asn): a new fast-moving alpha chain variant found in a subject of Spanish origin. Hemoglobin 13: 157-162, 1990. [PubMed: 4667378] [Full Text: https://doi.org/10.1016/0014-5793(72)80645-8]

  401. Wajcman, H., Kister, J., Galacteros, F., Josifovska, O., Spielvogel, A., Nagel, R.L. Hb Montefiore [alpha126 (H9) asp-to-tyr]: an abnormal hemoglobin with high oxygen affinity and absence of cooperativity.. (Abstract) Blood 80 (suppl. 1): 82a, 1992.

  402. Wajcman, H., Kister, J., M'Rad, A., Marden, M. C., Riou, J., Galacteros, F. Hb Val de Marne [alpha133 (H16) ser-to-arg]: a new hemoglobin variant with moderate increase in oxygen affinity.. Hemoglobin 17: 407-417, 1993. [PubMed: 8294200] [Full Text: https://doi.org/10.3109/03630269308997495]

  403. Wajcman, H., Kister, J., M'Rad, A., Soummer, A. M., Galacteros, F. Hb Cemenelum [alpha92 (FG4) arg-to-trp]: a hemoglobin variant of the alpha-1/beta-2 interface that displays a moderate increase in oxygen affinity. Ann. Hemat. 68: 73-76, 1994. [PubMed: 8148419] [Full Text: https://doi.org/10.1007/BF01715134]

  404. Wajcman, H., Kister, J., Marden, M., Lahary, A., Monconduit, M., Galacteros, F. Hemoglobin Rouen (alpha140(HC2)tyr-to-his): alteration of the alpha chain C-terminal region and moderate increase in oxygen affinity. Biochim. Biophys. Acta 1180: 53-57, 1992. [PubMed: 1390944] [Full Text: https://doi.org/10.1016/0925-4439(92)90026-j]

  405. Wajcman, H., Kister, J., Riou, J., Galacteros, F., Girot, R., Maier-Redelsperger, M., Nayudu, N. V. S., Giordano, P. C. Hb Godavari (alpha-95(G2)pro to thr): a neutral amino acid substitution in the alpha-1/beta-2 interface that modifies the electrophoretic mobility of hemoglobin. Hemoglobin 22: 11-22, 1998. [PubMed: 9494044] [Full Text: https://doi.org/10.3109/03630269809071513]

  406. Wajcman, H., Vasseur, C., Blouquit, Y., Rosa, J., Labie, D., Najman, A., Reman, O., Leporrier, M., Galacteros, F. Unstable alpha-chain hemoglobin variants with factitious beta-thalassemia biosynthetic ratio: Hb Questembert (alpha131 [H14] ser-to-pro) and Hb Caen (alpha132 [H15] val-to-gly). Am. J. Hemat. 42: 367-374, 1993. [PubMed: 8493987] [Full Text: https://doi.org/10.1002/ajh.2830420407]

  407. Wajcman, H., Vasseur, C., Galacteros, F., Blouquit, Y., Rosa, J., Labie, D., Najman, A. Hb Questembert [alpha-131(H14)ser-to-pro]: a new highly unstable variant with unbalanced chain synthesis. (Abstract) Blood 76 (suppl. 1): 79a, 1990.

  408. Waye, J. S., Eng, B., Patterson, M., Carcao, M. D., Chang, L., Olivieri, N. F., Chui, D. H. K. Identification of two new alpha-thalassemia mutations in exon 2 of the alpha-1-globin gene. Hemoglobin 25: 391-396, 2001. [PubMed: 11791872] [Full Text: https://doi.org/10.1081/hem-100107876]

  409. Weatherall, D. J., Clegg, J. B. Recent developments in the molecular genetics of human hemoglobin. Cell 16: 467-479, 1979. [PubMed: 378393] [Full Text: https://doi.org/10.1016/0092-8674(79)90022-9]

  410. Webber, B. B., Lam, H., Wilson, J. B., Huisman, T. H. J. Hb Albany-GA or alpha11(A9)lys-to-asn. Hemoglobin 7: 257-262, 1983. [PubMed: 6860428] [Full Text: https://doi.org/10.3109/03630268309048654]

  411. Webber, B. B., Wilson, J. B., Gu, L.-H., Huisman, T. H. J. Hb Ethiopia or alpha140(HC2)tyr-to-his. Hemoglobin 16: 441-443, 1992. [PubMed: 1428951] [Full Text: https://doi.org/10.3109/03630269209005699]

  412. Weitkamp, L. R., Stamatoyannopoulos, G., Rowley, P. T., Kirk, R. L. The linkage relationships of the haemoglobin beta, delta and alpha loci with 34 genetic marker systems. Ann. Hum. Genet. 41: 61-75, 1977. [PubMed: 921219] [Full Text: https://doi.org/10.1111/j.1469-1809.1977.tb01962.x]

  413. Wilkie, A. O. M., Higgs, D. R., Rack, K. A., Buckle, V. J., Spurr, N. K., Fischel-Ghodsian, N., Ceccherini, I., Brown, W. R. A., Harris, P. C. Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64: 595-606, 1991. [PubMed: 1991321] [Full Text: https://doi.org/10.1016/0092-8674(91)90243-r]

  414. Williamson, D., Langdown, J. V., Myles, T., Mason, C., Henthorn, J. S., Davies, S. C. Polycythaemia and microcytosis arising from the combination of a new high oxygen affinity haemoglobin (Hb Luton, alpha-89 his-to-leu) and alpha-thalassaemia trait. Brit. J. Haemat. 82: 621-622, 1992. [PubMed: 1486044] [Full Text: https://doi.org/10.1111/j.1365-2141.1992.tb06478.x]

  415. Wilson, J. T., deRiel, J. K., Forget, B. G., Marotta, C. A., Weissman, S. M. Nucleotide sequence of 3-prime untranslated portion of human alpha globin mRNA. Nucleic Acids Res. 4: 2353-2368, 1977. [PubMed: 909779] [Full Text: https://doi.org/10.1093/nar/4.7.2353]

  416. Wiltshire, B. G., Clark, K. G. A., Lorkin, P. A., Lehmann, H. Haemoglobin Denmark Hill (alpha 95 (G2) pro-to-ala), a variant with unusual electrophoretic and oxygen-binding properties. Biochim. Biophys. Acta 278: 459-464, 1972. [PubMed: 5085669] [Full Text: https://doi.org/10.1016/0005-2795(72)90006-2]

  417. Winter, W. P., Rucknagel, D. L., Fielding, J. Identification of several rare hemoglobin variants discovered in a population survey including a new variant Hb Garden State alpha-82 ala-to-asp. (Abstract) Clin. Res. 26: 122A, 1978.

  418. Wong, S. C., Ali, M. A. M., Pond, J. R., Rubin, S. M., Johnson, S. E. N., Wilson, J. B., Huisman, T. H. J. Hb J-Singa (alpha-78 asn-to-asp), a newly discovered hemoglobin variant with the same amino acid substitution as one of the two present in Hb J-Singapore (alpha-78 asn-to-asp, alpha-79 ala-to-gly). Biochim. Biophys. Acta 784: 187-188, 1984. [PubMed: 6691995] [Full Text: https://doi.org/10.1016/0167-4838(84)90126-2]

  419. Yamaoka, K., Kawamura, K., Hanada, M., Seita, M., Hitsumoto, S., Ooya, I. Studies on abnormal haemoglobins. Jpn. J. Hum. Genet. 5: 99-111, 1960.

  420. Yanase, T., Hanada, M., Seita, M., Ohya, I., Ohta, Y., Imamura, T., Fujimura, T., Kawasaki, K., Yamaoka, K. Molecular basis of morbidity from a series of studies of hemoglobinopathies in western Japan. Jpn. J. Hum. Genet. 13: 40-53, 1968. [PubMed: 5750181]

  421. Yi, C. H., Li, H. J., Li, H. W., Zhang, X. S., Zhao, X. N., Zhang, C. T. Hemoglobin Shenyang found among Uygurs in P.R. China. Hemoglobin 13: 97-99, 1989. [PubMed: 2703370] [Full Text: https://doi.org/10.3109/03630268908998059]

  422. Yi-Tao, Z., Headlee, M. E., Henson, J., Lam, H., Wilson, J. B., Huisman, T. H. J. Identification of hemoglobin G-Philadelphia (alpha68 asn-to-lys) and hemoglobin Matsue-Oki (alpha75 asp-to-asn) in a black infant. Biochim. Biophys. Acta 707: 206-212, 1982. [PubMed: 6814490] [Full Text: https://doi.org/10.1016/0167-4838(82)90352-1]

  423. Yodsowan, B., Svasti, J., Srisomsap, C., Winichagoon, P., Fucharoen, S. Hb Siam [alpha-15(A13)gly-arg] is a GGT-CGT mutation in the alpha-1-globin gene. Hemoglobin 24: 71-75, 2000. [PubMed: 10722119] [Full Text: https://doi.org/10.3109/03630260009002277]

  424. Yongsuwan, S., Svasti, J., Fucharoen, S. Decreased heat stability found in purified hemoglobin Queens (alpha34(B15)leu-to-arg). Hemoglobin 11: 567-570, 1987. [PubMed: 3446653] [Full Text: https://doi.org/10.3109/03630268709027873]

  425. Zeng, F.-Y., Fucharoen, S., Huang, S.-Z., Rodgers, G. P. Hb Q-Thailand (alpha74 (EF3) asp-to-his): gene organization, molecular structure, and DNA diagnosis. Hemoglobin 16: 481-491, 1992. [PubMed: 1487419] [Full Text: https://doi.org/10.3109/03630269208993116]

  426. Zeng, Y., Huang, S., Liang, X., Long, G., Lam, H., Wilson, J. B., Huisman, T. H. J. Hb Wuming or alpha11 (A9) lys-to-gln. Hemoglobin 5: 679-687, 1981. [PubMed: 7338470] [Full Text: https://doi.org/10.3109/03630268108991835]

  427. Zeng, Y., Huang, S., Qiu, X., Cheng, G., Ren, Z., Jin, Q., Chen, C., Jiao, C., Tang, Z., Liu, R., Bao, X., Zeng, L., Duan, Y., Zhang, G. Hemoglobin Chongqing (alpha2 (NA2) leu-to-arg) and hemoglobin Harbin (alpha16 (A14) lys-to-met) found in China. Hemoglobin 8: 569-581, 1984. [PubMed: 6526652] [Full Text: https://doi.org/10.3109/03630268408991742]

  428. Zeng, Y., Huang, S., Zhou, X., Qiu, X., Dong, Q., Li, M., Bai, J. Hb Shenyang (alpha26 (B7) ala-to-glu): a new unstable variant found in China. Hemoglobin 6: 625-628, 1982. [PubMed: 7161109]

  429. Zhao, W., Wilson, J. B., Webber, B. B., Kutlar, A., Tamagnini, G. P., Kuam, B., Huisman, T. H. J. Hb Hekinan observed in three Chinese from Macau: identification of the GAG-to-GAT mutation in the alpha-1-globin gene. Hemoglobin 14: 627-635, 1990. [PubMed: 1983218] [Full Text: https://doi.org/10.3109/03630269009046971]

  430. Zhou, Z., Chen, L., Chen, P., Zhang, K., Wang, Y. Hemoglobin Hangzhou alpha64 (E13) asp-to-gly: a new variant found in China. Hemoglobin 11: 31-33, 1987. [PubMed: 3583763] [Full Text: https://doi.org/10.3109/03630268709036578]

  431. Zimmer, E. A., Martin, S. L., Beverley, S. M., Kan, Y. W., Wilson, A. C. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc. Nat. Acad. Sci. 77: 2158-2162, 1980. [PubMed: 6929543] [Full Text: https://doi.org/10.1073/pnas.77.4.2158]

  432. Zwerdling, T., Williams, S., Nasr, S. A., Rucknagel, D. L. Hb Port Huron (alpha56(E5)lys-to-arg): a new alpha chain variant. Hemoglobin 15: 381-391, 1991. [PubMed: 1802882] [Full Text: https://doi.org/10.3109/03630269108998858]


Contributors:
Ada Hamosh - updated : 12/14/2012
Ada Hamosh - updated : 11/1/2012
Patricia A. Hartz - updated : 1/28/2010
Carol A. Bocchini - updated : 5/22/2009
Victor A. McKusick - updated : 9/19/2006
Ada Hamosh - updated : 7/21/2006
Victor A. McKusick - updated : 3/29/2006
Victor A. McKusick - updated : 10/11/2005
Victor A. McKusick - updated : 8/11/2005
Victor A. McKusick - updated : 5/11/2005
Victor A. McKusick - updated : 12/6/2004
Victor A. McKusick - updated : 8/6/2004
Victor A. McKusick - updated : 6/2/2004
Victor A. McKusick - updated : 1/20/2004
Victor A. McKusick - updated : 1/15/2004
Victor A. McKusick - updated : 9/2/2003
Victor A. McKusick - updated : 3/5/2003
Victor A. McKusick - updated : 10/2/2002
Victor A. McKusick - updated : 6/3/2002
Victor A. McKusick - updated : 5/23/2002
Victor A. McKusick - updated : 2/27/2002
Victor A. McKusick - updated : 11/1/2001
Victor A. McKusick - updated : 10/11/2001
Victor A. McKusick - updated : 5/1/2000
Victor A. McKusick - updated : 1/19/2000
Victor A. McKusick - updated : 7/14/1999
Ada Hamosh - updated : 4/21/1999
Victor A. McKusick - updated : 2/24/1999
Victor A. McKusick - updated : 2/9/1999
Ada Hamosh - updated : 6/12/1998
Victor A. McKusick - updated : 4/30/1998
Victor A. McKusick - updated : 2/6/1998
Victor A. McKusick - updated : 8/27/1997

Creation Date:
Victor A. McKusick : 6/23/1986

Edit History:
alopez : 09/15/2023
carol : 09/01/2023
carol : 08/15/2023
carol : 09/12/2022
carol : 11/01/2019
carol : 05/21/2018
carol : 05/10/2018
joanna : 07/20/2016
carol : 07/19/2016
carol : 07/15/2016
carol : 7/14/2016
carol : 7/14/2016
carol : 7/12/2016
joanna : 7/11/2016
carol : 1/21/2016
carol : 2/23/2015
carol : 9/12/2014
tpirozzi : 9/30/2013
alopez : 12/19/2012
terry : 12/14/2012
alopez : 11/2/2012
terry : 11/1/2012
alopez : 8/6/2012
alopez : 7/25/2011
carol : 6/9/2011
alopez : 5/13/2011
alopez : 1/28/2010
terry : 6/3/2009
carol : 5/22/2009
terry : 1/15/2009
terry : 1/15/2009
terry : 1/14/2009
wwang : 10/4/2007
wwang : 10/3/2006
terry : 9/19/2006
alopez : 7/25/2006
terry : 7/21/2006
terry : 6/23/2006
terry : 3/29/2006
carol : 10/21/2005
wwang : 10/21/2005
terry : 10/11/2005
carol : 10/3/2005
terry : 8/11/2005
wwang : 6/7/2005
terry : 5/17/2005
terry : 5/17/2005
wwang : 5/13/2005
terry : 5/11/2005
terry : 2/7/2005
tkritzer : 1/25/2005
terry : 12/6/2004
tkritzer : 8/10/2004
terry : 8/6/2004
tkritzer : 6/8/2004
terry : 6/2/2004
carol : 3/17/2004
tkritzer : 1/21/2004
terry : 1/20/2004
terry : 1/15/2004
cwells : 9/3/2003
terry : 9/2/2003
carol : 8/29/2003
carol : 8/25/2003
carol : 5/13/2003
terry : 4/17/2003
terry : 3/5/2003
terry : 3/3/2003
tkritzer : 12/10/2002
tkritzer : 10/7/2002
tkritzer : 10/3/2002
tkritzer : 10/2/2002
carol : 6/3/2002
terry : 6/3/2002
terry : 5/23/2002
cwells : 3/22/2002
cwells : 3/20/2002
terry : 2/27/2002
mcapotos : 11/1/2001
mcapotos : 10/26/2001
mcapotos : 10/11/2001
cwells : 5/31/2001
mcapotos : 2/19/2001
mcapotos : 2/15/2001
terry : 2/14/2001
mcapotos : 5/26/2000
mcapotos : 5/24/2000
terry : 5/1/2000
mcapotos : 2/7/2000
mcapotos : 2/4/2000
carol : 1/28/2000
mcapotos : 1/28/2000
mcapotos : 1/24/2000
terry : 1/19/2000
carol : 12/8/1999
mgross : 7/16/1999
terry : 7/14/1999
carol : 6/27/1999
terry : 4/30/1999
alopez : 4/21/1999
terry : 3/24/1999
carol : 3/9/1999
terry : 2/24/1999
mgross : 2/16/1999
mgross : 2/11/1999
terry : 2/9/1999
dkim : 7/21/1998
dkim : 7/21/1998
carol : 7/2/1998
alopez : 6/12/1998
terry : 6/5/1998
terry : 6/5/1998
alopez : 5/14/1998
carol : 5/4/1998
terry : 4/30/1998
mark : 2/16/1998
terry : 2/6/1998
terry : 2/6/1998
mark : 10/19/1997
jenny : 9/5/1997
terry : 8/27/1997
alopez : 7/31/1997
alopez : 7/29/1997
terry : 7/10/1997
mark : 7/10/1997
alopez : 7/10/1997
terry : 7/9/1997
terry : 7/7/1997
mark : 6/14/1997
terry : 11/15/1996
terry : 11/13/1996
mark : 4/12/1996
terry : 4/9/1996
mark : 2/13/1996
terry : 2/5/1996
mark : 11/17/1995
terry : 11/18/1994
jason : 7/29/1994
pfoster : 4/25/1994
mimadm : 4/17/1994
warfield : 4/8/1994