Проблема возникновения жизни и теории самоорганизующихся систем

Реальный прорыв в понимании жизни, как самоорганизующийся системы обозначился лишь в последние 20-25 лет. Самоорганизующейся называют такую систему, которая обладает способностью корректировать свое поведение на основе предшествующего опыта (сам термин был введен в 1947 г. одним из создателей кибернетики физиологом У. Эшби ). Следует сразу оговорить, что при этом было строго показано, что рассмотрение процессов развития (в том числе - биологических систем из добиологических) принципиально невозможно в рамках классической термодинамики. Создатель альтернативной, неравновесной, термодинамики И. Пригожин произвел научную революцию тех же примерно масштабов, что в свое время Ньютон или Эйнштейн, и революция эта еще отнюдь не завершена. Между тем, все красивые модели последних лет - разрушение зеркальной симметрии с возникновением хиральной чистоты В.И. Гольданского (1986), или более подробно рассматриваемые далее гиперциклы М. Эйгена (1982) - работают только в рамках пригожинской термодинамики. Именно поэтому все они не имеют отношения к классическому абиогенезу: если Геккель и Опарин сводили биологию к химии, то физхимик Эйген, как мы увидим, в известном смысле сводит химию к биологии. Эйген выдвинул концепцию образования упорядоченных макромолекул из неупорядоченного вещества на основе матричной репродукци и естественного отбора. Он начинает с того, что дарвиновский принцип естественного отбора (ЕО) - единственный понятный нам способ создания новой информации (это физическая величина, отражающая меру упорядоченности системы). Если имеется система самовоспроизводящихся единиц, которые строятся из материала, поступающего в ограниченном количестве из единого источника, то в ней с неизбежностью возникает конкуренция и, как ее следствие, ЕО. Эволюционное поведение, управляемое ЕО, основано на самовоспроизведении с "информационным шумом" (в случае эволюции биологических видов роль "шума" выполняют мутации). Наличия этих двух физических свойств достаточно, чтобы стало принципиально возможным возникновение системы с прогрессирующей степенью сложности. В этом плане предшественником Эйгена является биохимик Г.Кастлер (1966), проанализировавший поведение системы нуклеиновых кислот в рамках теории информации. Он пришел к выводу, что новая информация возникает в системе, только если в ней происходит случайный выбор ("методом тыка") с последующим запоминанием его результатов, а не целенаправленный отбор наилучшего варианта. В последнем случае можно говорить лишь о реализации той информации, что заложена в систему изначально, то есть о выделении уже имеющейся информации из "шума". Сама же возможность возникновения "новизны" (т.е. акта творчества) определяется свойствами информации как таковой: как было показано А.А. Ляпуновым (1965), на нее не распространяются законы сохранения, т.е. информация, в отличие от материи и энергии, может быть заново создана (и, соответственно, может быть и безвозвратно утрачена).

Говоря об усложнении системы, необходимо упомянуть выводы еще одного основоположника кибернетики, Дж. фон Неймана (1960), решавшего проблему самовоспроизведения автоматов. Оказалось, способность к самовоспроизведению принципиально зависит от сложности организации. На низшем уровне сложность является вырождающейся, т.е. каждый автомат способен воспроизводить лишь менее сложные автоматы. Существует, однако, вполне определенный критический уровень сложности, начиная с которого эта склонность к вырождению перестает быть всеобщей: "Сложность, точно так же, как и структура организмов, ниже некого минимального уровня является вырождающейся, а выше этого уровня становится самоподдерживающейся или даже может расти". Итак, Эйгену "всего-навсего" осталось найти реальный класс химических реакций, компоненты которых вели бы себя подобно дарвиновским видам, т.е. обладали бы способностью "отбираться" и, соответственно, эволюционировать в сторону увеличения сложности организации. Именно такими свойствами, как выяснилось, и обладают нелинейные автокаталитические цепи, названные им гиперциклами .

Каталитический цикл как целое эквивалентен автокатализатору. Если же такие автокаталитические (т.е. самовоспроизводящиеся) единицы оказываются, в свою очередь, сочленены между собой посредством циклической связи, то возникает каталитический гиперцикл. Гиперцикл, таким образом, основан на нелинейном автокатализе - автокатализе как минимум второго порядка, и представляет собой следующий, более высокий уровень в иерархии автокаталитических систем.

Гиперциклы (одним из простейших примеров которых является размножение РНК-содержащего вируса в бактериальной клетке) обладают рядом уникальных свойств, порождающих дарвиновское поведение системы. Гиперцикл конкурирует (и даже более ожесточенно, чем дарвиновские виды) с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами - если только не объединен с ними в автокаталитический цикл следующего, более высокого, порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от "предков" к "потомкам"), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.

Итак, именно гиперцикл (который сам по себе - еще чистая химия) является тем самым критическим уровнем, начиная с которого сложность неймановского "самовоспроизводящегося автомата" перестает быть вырождающейся. Эта концепция, в частности, вполне удовлетворительно описывает возникновение на основе взаимного катализа системы "нуклеиновая кислота-белок" - решающее событие в процессе возникновения жизни на Земле. Вместе с тем, сам Эйген подчеркивает, что в ходе реальной эволюции гиперцикл вполне мог "вымереть" - после того, как ферментные системы следующего поколения (с более высокой точностью репродукции) сумели индивидуализировать интегральную систему в форме клетки.

Ссылки: