Генетический аппарат клетки: общие сведения
Вся информация о признаках, присущих организму, сосредоточена в его генетическом аппарате. Он обеспечивает сохранение и воспроизведение этих признаков в процессе размножения организма, так как возникающие дочерние особи обнаруживают в большинстве случаев полное сходство с родительскими формами. Это говорит о том, что генетический аппарат обладает высокой стабильностью и точностью механизмов, обеспечивающих его функционирование. Однако стабильность генетического аппарата не абсолютна, так как это исключало бы всякую возможность его изменений и, следовательно, эволюционных преобразований, приведших в конечном итоге к возникновению разнообразных форм жизни, свидетелями (и представителями) которых мы являемся.
Таким образом, генетический аппарат должен быть организован так, чтобы, с одной стороны, обеспечивать свою стабильность, с другой - быть достаточно пластичным, т. е. обладать способностью к изменчивости.
Как это ни кажется в настоящее время парадоксальным, но до 40-х гг. ХХ столетия немногие микробиологи думали, что бактерии обладают наследственностью, основанной на тех же принципах, которые установлены для высших организмов. Прокариоты не имеют ни оформленного ядра, ни хромосом, аналогичных таковым эукариотных клеток, поэтому считали, что бактерии в генетическом отношении представляют собой неупорядоченную форму жизни. Одним из первых к пониманию того, что бактерии и высшие организмы подчиняются общим генетическим законам, подошел М.Бейеринк, описавший у прокариот стабильные, легко распознаваемые и наследуемые изменения.
Генетический материал любой клетки представлен ДНК , информационные свойства которой определяются специфической последовательностью четырех нуклеотидов в полинуклеотиднои цепи. Полуконсервативный механизм репликации ДНК, в результате которого из одной родительской двухцепочной молекулы образуются две дочерние молекулы, содержащие по одной родительской и одной вновь синтезированной комплементарной полинуклеотидной цепи, наилучшим образом обеспечивает идентичность исходной и синтезированных молекул и, следовательно, сохранность видоспецифической наследственной информации в ряду поколений клеток и организмов. Частота ошибок, возникающих в процессе репликации, порядка 10 в степени минус 7.
Реализация наследственной информации в процессе жизненного цикла (онтогенеза) организма - двухступенчатый процесс. Сначала с определенных участков ДНК информация переписывается (транскрибируется) в виде комплементарных нуклеотидных последовательностей молекул иРНК , которая перемещается в цитоплазму, связывается с рибосомами и в рибосоме с иРНК осуществляется перевод ( трансляция ) генетической информации в определенную последовательность аминокислотных остатков молекулы белка.
Процесс транскрипции находится в клетке под строгим контролем, поэтому имеет место как неодинаковое транскрибирование во времени разных участков ДНК (генов), так и неодинаковая скорость, с которой гены могут транскрибироваться. В результате количество молекул иРНК в клетке, комплементарных разным генам, сильно различается. Хотя в целом механизмы синтеза ДНК и РНК сходны, процесс транскрипции не обладает той степенью точности, которая характерна для репликации ДНК. Однако поскольку иРНК не способна к самовоспроизведению, возникающие при ее синтезе ошибки в последующих клеточнш генерациях не воспроизводятся и, следовательно, не могут наследоваться.
Информационные РНК служат матрицами для синтеза различных белковых молекул. Перевод генетической информации с "языка" нуклеотидов на "язык" аминокислот - сложный многостадийный процесс, включающий активацию аминокислот, образование ими комплексов с особым видом РНК ( транспортными РНК, или тРНК ), взаимодействие этих комплексов с иРНК , связанной с рибосомой , приводящее в конечном итоге к формированию полипептидной цепи, аминокислотный состав которой изначально запрограммирован в определенном участке ДНК. В осуществлении каждой из стадий, ведущих к синтезу молекулы белка, участвует несколько различных ферментов.
Хотя механизм трансляции отличается высокой точностью, вероятность ошибки в целом выше, чем в случае синтеза молекул ДНК и РНК. Наиболее уязвимый этап - "узнавание" с помощью фермента аминокислоты соответствующей молекулой тРНК. По имеющимся данным, частота возникновения ошибок на этом этапе порядка 10 в степени минус 4, что и определяет, возможно, уровень точности процесса синтеза белка в целом. Однако, как и в случае синтеза РНК, ошибки в процессе трансляции, приводящие к синтезу измененной молекулы белка, не воспроизводятся, если они не закодированы исходно в генетическом материале.
Таким образом, процессы транскрипции и трансляции, служащие для выражения в онтогенезе генетической информации, не приводят к наследованию изменений, возникающих при их функционировании. Только изменения, происходящие в молекулах ДНК, могут сохраняться в ряду поколений, поскольку они воспроизводятся в процессе репликации. Следовательно, в основе эволюции прокариот лежит способность к изменению только их генетического материала. У прокариот весь генетический материал, необходимый для жизнедеятельности, локализован в одной хромосоме, т.е. бактериальная клетка гаплоидна. В определенных условиях в клетках бактерий может содержаться несколько копий хромосомы.