Карбоксидобактерии

Карбоксидобактерии - аэробные эубактерии , способные расти, используя окись углерода (СО) в качестве единственного источника углерода и энергии. Таким свойством обладают некоторые представители родов Pseudomonas , Achromobacter , Comamonas . (Способность окислять СО обнаружена у представителей прокариот, принадлежащих к эубактериям ( пурпурные несерные бактерии , цианобактерии , клостридии ) и архебактериям ( метанобразующие бактерии ). Однако в большинстве случаев этот процесс не поддерживает рост культур и механизм его неясен).

Карбоксидобактерии могут расти автотрофно , ассимилируя СО2 в восстановительном пентозофосфатном цикле , а также использовать в качестве единственного источника углерода и энергии различные органические соединения. При выращивании на среде с СО2 в качестве единственного источника углерода большинство карбоксидобактерий энергию могут получать за счет окисления молекулярного водорода, при этом рост на среде с СО2 + Н2 происходит активнее, чем на среде с СО. Это дало основание некоторым исследователям рассматривать карбоксидобактерии как особую физиологическую подгруппу водородных бактерий . В то же время способность использовать в качестве субстрата дыхательный яд указывает на осуществление карбоксидобактериями нового типа хемолитотрофного метаболизма. Кроме того, обнаружение у них ферментов и факторов, отсутствующих у водородных бактерий, неспособность некоторых карбоксидобактерий окислять Н2 и ряд других признаков позволяют сделать вывод об определенной обособленности этой группы эубактерий.

Использование СО карбоксидобактериями происходит путем его окисления в соответствии с уравнением:

СО + Н2О переходит в СО2 + 2е + 2Н+

Продукт реакции используется далее по каналам автотрофного метаболизма. (Таким образом, при выращивании карбоксидобактерий на среде с СО в качестве единственного источника углерода и энергии источником углерода служит не СО, а СО2). Теоретически суммарное уравнение окисления СО и синтеза клеточной биомассы карбоксидобактерий может быть представлено в следующем виде:

7СО + 2,5О2 + Н2О переходит в 6СО2 + (СН2О),

где (СН2О) - символ биомассы.

Из уравнения видно, что окисление СО - неэффективный способ получения энергии. Карбоксидобактерии для синтеза клеточного вещества вынуждены окислять большое количество СО: на биосинтетические процессы в в разных условиях роста идет от 2 до 16% углерода СО.

Окисление СО карбоксидобактериями осуществляется с участием по крайней мере одного специфического фермента - СО-оксидазы. Это флавопротеин, в молекуле которого содержатся молибден и FeS-центры. Фермент в клетке находится в растворимой и связанной с мембраной форме. Растворимая СО-оксидаза локализована с внутренней стороны ЦПМ . При росте карбоксидобактерий на СО в качестве единственного источника углерода и энергии СО-оксидаза выполняет следующие функции: окисляет СО до СО2, передает электроны в дыхательную цепь и участвует в синтезе НАД*Н2 путем обратного переноса электронов.

Состав дыхательных цепей карбоксидобактерий аналогичен таковому водородных бактерий . Для карбоксидобактерий Pseudomonas carboxydovorans показано, что дыхательная цепь разветвлена на уровне убихинона или цитохрома b . Одна ветвь ( органотрофная ) содержит цитохромы b558, с и а1, вторая ( литотрофная ) - цитохромы b561 и о. При окислении органического субстрата электроны поступают преимущественно в органотрофную ветвь цепи, при окислении Н2 и СО - в обе. Низкая энергетическая эффективность использования СО карбоксидобактериями указывает на то, что перенос электронов по цепи в этом случае приводит к функционированию, вероятно, 1 генератора дельта мю Н+ .

Одним из интересных свойств карбоксидобактерий является сам факт использования ими окиси углерода, служащей специфическим ингибитором терминальных оксидаз, таких как цитохромы типа а ( рис. 94 ). Для некоторых карбоксидобактерий показана устойчивость к содержанию в атмосфере до 90% СО. В то же время в электронтранспортных цепях этих организмов не обнаружено необычных цитохромов. В качестве механизмов, приводящих к СО-устойчивости этих бактерий, обсуждаются:

- быстрая детоксикация СО с помощью окисляющего фермента;

- индукция ответвляющихся от основного пути СО-нечувствительных терминальных оксидаз, через которые и осуществляется перенос электронов на О2;

- повышенный синтез компонентов электронтранспортной цепи;

- пространственное разобщение процесса окисления СО и цитохромоксидаз, чувствительных к ней.

Основными источниками окиси углерода в природных условиях являются промышленное производство, транспорт, вулканическая деятельность и биологические процессы. Известно, что СО образуется в результате жизнедеятельности разных организмов (бактерии, грибы, водоросли, животные, растения). Одним из путей удаления этого токсического соединения служит использование его бактериями, и в первую очередь в наибольшей степени приспособленными для этого.

Ссылки: