Локализация звука

Чрезвычайная чувствительность и частотная избирательность слуховой системы была представлена у животных задолго до того, как развилась человеческая речь. В значительной степени тонкости слуховой системы возникли, чтобы улучшить способность организма определять местоположение звука в пространстве. Преимущества этого очевидны: сигналы, передающиеся на большие расстояния как звуковые волны, могут помочь обнаружить хищника или жертву при отсутствии зрительной и другой информации. Однако, в отличие от зрительной системы или соматосенсорной системы , звуковой нейроэпителий не может быть использован для кодирования места (локации), поскольку он приспособлен для тонотопического картирования. Вместо этого направление звука вычисляется на основе бинаурального сравнения временного хода и интенсивности сигналов, которое производится в центральной слуховой системе . Слуховой проводящий путь поэтому сложен и включает в себя многочисленные подкорковые синаптические переключения и многочисленные перекрещивания почти на каждом уровне.

Дорзальное кохлеарное ядро в основном предназначено для моноурального частотного анализа и обеспечивает относительно прямую, тонотопически организованную проекцию на контрлатеральную область A1 . Напротив, нейроны второго порядка в вентральном кохлеарном ядре проецируются как ипсилатерально, так и контрлатерально на комплекс верхних олив в стволе мозга . Большинство нейронов в медиальной верхней оливе (MSO) вобуждаются стимуляцией любого из ушей (и, таким образом, соотносятся с EE-нейронами , см. рис. 18.21 ), но реагируют лучше всего, когда тон подается на оба уха с характерной задержкой, соответствующей достижению сначала одного уха, потом другого. Скорость звука в воздухе составляет 340 м/с, так что максимальная временная разница создаваемая человеческой головой (около 18 см в диаметре), составляет 0,5 мс для звука, приходящего вдоль оси между обоими ушами, и значительно меньшие задержки для звуков, приходящих спереди. В дополнение к разнице во времени прибытия, постоянный источник звука вызывает фазовый сдвиг между двумя ушами.

Клетки латеральной верхней оливы (LSO) получают возбуждение ипсилатерального вентрального кохлеарного ядра ( рис. 18.21 ). Клетки в контрлатеральном вентральном кохлеарном ядре проецируются на противоположную сторону и образуют синапсы на медиальном ядре трапециевидного тела (MNTB) . Клетки MNTB тормозят нейроны в LSO.

Таким образом, нейроны в LSO возбуждаются ипсилатеральным и подавляются контрлатеральным звуком ( EI ). Такое взаимодействие может быть полезным для выявления различий в интенсивности звука в двух ушах. На высоких частотах обнаруживается 10-кратная разница в частоте, для которой голова служит как эффективное затенение звука.

Различия как по фазе, так и по интенсивности изменяются как функция частоты. Для головы человека разница по фазе значительна на частотах ниже 2 кГц, тогда как отличия по интенсивности становятся более существенными на более высоких частотах. Психофизические исследования показали, что локализация осуществляется сопоставлением различий между двумя ушами по времени прихода сигнала и/или интенсивности входящего звука. Таким образом, если подаются щелчки через наушники с различными задержками, звук локализуется по направлению к уху, к которому он приходит раньше. Если щелчки подаются одновременно, но с разной интенсивностью, то звук локализуется с той стороны, где щелчок громче. Фактически сигналы локализации зависят в точности от частотного содержания. Голова и внешнее ухо отфильтровывают специфические компоненты частоты, в зависимости от места в пространстве, откуда исходит звук. Эти спектральные метки являются важными сигналами, которые используются дав локализации звука. Люди могут различать интеральную временную разницу всего в 5 мкс - очень высокое разрешение, если учесть, что длительность потенциала действия составляет примерно 1 мс; это показывает важность точной временной организации для слуховых функций.

Ссылки: