Принцип размера и градуальное мышечное сокращение

Как организована активность мотонейрона, в результате которой возникают плавные движения конечностей? Как указывалось ранее, сила мышечных сокращений может быть увеличена вовлечением дополнительных мотонейронов или усилением частоты их активации. Однако следует уточнить, что это вовлечение мотонейронов определенным образом связано с их размерами. Мотонейроны малого размера с тонкими аксонами иннервируют небольшое число мышечных волокон. Поэтому их вовлечение слабо скажется на результирующем сокращении. Мотонейроны большого размера с толстыми аксонами контактируют с большим числом мышечных волокон. Поэтому нервный импульс, проходящий по такому аксону, приводит к сильному мышечному сокращению. Во время сокращения первоначально активируются малые нейроны, приводя к плавному началу сокращения. Затем вовлекаются крупные мотонейроны, что проявляется в значительном усилении сокращения. Таким образом, за счет вовлечения малых и крупных мотонейронов достигается плавность и градуальность сокращения.

Последовательное включение мотонейронов разного размера известно как принцип размера (size principle).

Максимальное сокращение, основанное на вовлечении всех моторных единиц , достигает более 3,5 кг. Ясно, что участие мелких нейронов мало скажется тогда, когда максимальное сокращение уже достигнуто. С другой стороны, редкая активация крупных мотонейронов может нарушить плавность движений, управляемых мелкими мотонейронами. Тот факт, что мотонейроны вовлекаются в сокращение согласно их размеру, приводит к тому, что участие каждой последующей двигательной единицы добавляет около 5% к текущему мышечному усилию. Например, при активации мелкого мотонейрона, управляющего m. soleus кошки , эта мышца развивает усилие величиной 5 г, а при активации крупного мотонейрона - более - 100 г.

Тот факт, что вовлечение очередной моторной единицы добавляет к текущему напряжению определенную фиксированную фракцию, находит проявление и в сенсорных аспектах моторной активности. Например, мы судим о весе предметов по мышечной силе, необходимой для их удержания. При этом мы можем различить предметы весом 2 и 3 г, но не заметим разницу между предметами весом 2002 и 2003 г. То, что важно относительное изменение, наиболee ясно сформулировано в принципе Вебера-Фехнера ( глава 17 ).

Могут ли клеточные свойства мотонейронов объяснить принцип размера? Представьте. что все мотонейроны, иннервирующие мышцу, получают один и тот же синаптический вход. Падение напряжения, продуцированное синаптическим током в отдельном мотонейроне, зависит от входного сопротивления, которое в свою очередь является функцией размера клетки ( рис. 22.5 ). Как показано в главе 7 , входное сопротивление обратно пропорционально радиусу клетки. Поэтому один и тот же входной сигнал вызовет гораздо большее падение напряжение в нейронах малого размера, что с большей вероятностью вызовет в них генерацию потенциала действия, чем в крупных нейронах. По мере увеличения сенсорного притока нейроны все более крупного размера будут генерировагь потенциал действия.

Принцип размера справедлив для всех синаптических контактов, поскольку они равномерно распределены среди мотонейронов.

Ссылки: