Корень растения: первичное строение
Внутренняя структура корня относительно проста по сравнению со структурой стебля . Это связано прежде всего с отсутствием листьев и соответственно узлов и междоузлий . Вследствие этого в расположении тканей на разных уровнях наблюдаются сравнительно небольшие различия.
Уже в самом начале зоны роста масса клеток дифференцируется на три зоны: эпиблему , первичную кору и осевой цилиндр , который может быть сплошным или полым.
Снаружи молодые корневые окончания покрыты эпиблемой . Эпиблема дифференцируется из самого наружного слоя верхушечной меристемы , называемого дерматогеном . Она достигает полного развития в зоне поглощения, где ее клетки образуют корневые волоски . В зоне проведения эпиблема довольно быстро слущивается. Количество корневых волосков иногда весьма значительно. В одном из исследований сообщалось, что у четырехмесячного растения риса примерно 14 млрд. корневых волосков с суммарной длиной более 10000 км и площадью поглощения 40 кв.м.
Первичная кора обычно дифференцируется из периферийного отдела верхушечной меристемы, лежащего глубже дерматогена , - периблемы . Осевой (центральный) цилиндр формируется из внутренней части меристемы - плеромы . Здесь, используя микроскоп с большим увеличением, уже удается заметить клетки прокамбия .
Первичная кора, на которую приходится основная масса ткани молодого корня, образована паренхимными клетками и обычно дифференцируется на уровне зоны растяжения. Она рыхлая и имеет систему межклетников, по которой вдоль оси корня циркулируют газы, необходимые для дыхания и поддержки обмена веществ. У болотных и водных растений межклетники особенно обширны и вся коровая часть оказывается занятой аэренхимой . Кроме того, кора является той частью корня, через которую активно проходит радиальный (ближний) транспорт воды и растворенных солей от эпиблемы к осевому цилиндру .
В тканях коры осуществляется активный синтез метаболитов и откладываются запасные питательные вещества. Наружные клетки первичной коры, лежащие непосредственно под эпиблемой , называются экзодермой . В зоне проведения после слущивания эпиблемы экзодерма оказывается снаружи, может видоизменяться (опробковевать) и выполнять функцию защитной покровной ткани. Основная масса первичной коры (мезодерма) образована паренхимными клетками . Самый внутренний слой коры - эндодерма . Она диффенцируется в корне на уровне начала зоны всасывания. В отличие от стебля, в корне клетки эндодермы заметно отличаются морфологически от прочих клеток. Это связано с особой функцией эндодермы , выполняющей роль барьера, который контролирует передвижение веществ из коры в осевой цилиндр и обратно. На ранних этапах развития эндодерма состоит из живых, тонкостенных клеток. Позднее ее клетки приобретают некоторые характерные особенности. В частности, на их радиальных стенках появляются особые утолщения - пояски Каспари , с помощью которых перекрывается передвижение растворов вдоль клеточных стенок ( рис. 66 ).
У многих двудольных и голосеменных растений образованием поясков Каспари обычно заканчивается дифференциация эндодермы . У однодольных в клетках эндодермы могут происходить дальнейшие изменения. В частности, на внутренней поверхности первичных оболочек клеток откладывается суберин и далее толстая вторичная целлюлозная оболочка, которая со временем одревесневает. Наружные стенки почти не утолщаются. Среди толстостенных отмирающих клеток эндодермы встречаются живые клетки с тонкими неодревесневшими стенками, несущие только пояски Каспари . Это пропускные клетки; через них осуществляется физиологическая связь между первичной корой и осевым цилиндром ( рис. 67 ).
Осевой цилиндр (стела) начинает дифференцироваться в зоне роста, вплотную к зоне деления. Формирование осевого цилиндра начинается с образования наружного его слоя - перицикла . Перицикл представляет собой образовательную ткань , длительно сохраняющую меристематическую активность. Перицикл играет роль "корнеродного" слоя, так как в нем закладываются боковые корни, которые, таким образом, имеют эндогенное происхождение. В перицикле корня некоторых растений возникают также зачатки придаточных почек. У двудольных он участвует во вторичном утолщении корня, отчасти образуя камбий и феллоген . Под перициклом закладываются клетки боковой меристемы - прокамбия , дающие начало первичной флоэме , а несколько позднее - первичной ксилеме . Элементы флоэмы и ксилемы закладываются по кругу, чередуясь друг с другом, и развиваются центростремительно, т.е. по направлению к центру корня. Однако масса элементов ксилемы дифференцируется быстрее, обгоняет флоэму и занимает центр корня. В конечном итоге на поперечном сечении корня тяж ксилемы напоминает очертания звезды с различным числом лучей, между которыми располагаются участки флоэмы. Сформировавшаяся структура проводящей ткани получила название радиального проводящего пучка.
У большинства двудольных "звезда" ксилемы бывает ди-, три-, тетра- или пентархной, т.е. имеет соответственно 2, 3, 4 или 5 лучей. У однодольных она, как правило, многолучевая, или полиархная ( рис. 68 ).
Сердцевина нетипична для корня, но иногда заметна в центре в виде небольшого участка механической ткани или тонкостенных клеток, возникающих из прокамбия .
У большинства семенных растений боковые корни берут начало в перицикле . По мере увеличения размеров молодого бокового корня он проходит через первичную кору, возможно, секретируя при этом ферменты, разрушающие коровые клетки. Уже на ранних стадиях эндогенного развития корневой зачаток формирует корневой чехлик , апикальную и первичные меристемы. Центральные цилиндры главного и молодого боков корней первоначально не связаны между собой, но позднее соединяются за счет дифференциации в элементы ксилемы и флоэмы лежащих между ними паренхимных клеток .
Описанное строение корня получило название первичного ( рис. 67 ). У однодольных и папоротников первичная структура корня сохраняется в течение всей жизни и вторичные ткани не возникают.