Тельца включения

При экспрессии эукариотических генов в бактериальных клетках часть рекомбинантных эукариотических белков и некоторые прокариотические белки при высоком уровне биосинтеза переходят в нерастворимое состояние, образуя так называемые тельца включения.

Тельца включения представляют собой частицы, состоящие из агрегатов рекомбинантного белка и ряда бактериальных белков. Рекомбинантные белки в тельцах включения находятся в денатурированном неактивном состоянии, и для их получения в растворимом виде приходится применять мощные денатурирующие агенты, такие как мочевина, гуанидинхлорид и детергенты. Солюбилизированный в этих жестких условиях рекомбинантный белок для восстановления нативной конформации требует ренатурации, в процессе обработки белки могут изменять свою структуру, а при концентрировании из разбавленных растворов, в которых проводится ренатурация, часто вновь выпадают в осадок.

Для поддержания белков в растворимом состоянии в клетках эукариот реализуются три основных механизма: компартментализация продуктов трансляции, белок-белковые взаимодействия и посттрансляционные модификации. Образующиеся в результате трансляции мРНК рибосомами в эндоплазматическом ретикулуме полипептидные цепи не распределяются хаотически в цитоплазме эукариотических клеток, но последовательно переходят через ряд компартментов, где претерпевают посттрансляционные модификации. Внутренние условия отдельных компартментов могут существенно различаться. Так, молекулы инсулина накапливаются in vivo в секреторных гранулах, pH в которых составляет 4,5-5,5. pH цитоплазмы бактериальных клеток около 7,8, в этих условиях инсулин лишь слабо растворим. Многие гидрофобные эукариотические белки не существуют в растворимой форме в отсутствие фосфолипидов мембран. Белки молока являются интегральной частью мицелл, стабилизированных ионами Ca2+.

Посттрансляционные модификации белков (фосфорилирование, гидроксилирование, гликозилирование и ограниченный протеолиз), происходящие в определенных компартментах эукариотических клеток, также влияют на растворимость белков, их стабильность и биологические функции. Поскольку в бактериальных клетках соответствующие системы посттрансляционных модификаций белков отсутствуют, в них не могут быть получены биологически полноценные рекомбинантные эукариотические полипептиды, что накладывает ограничения на использование бактерий в биотехнологии.

На растворимость белков влияет их нативная конформация в растворе. Правильное сворачивание (фолдинг) полипептидных цепей некоторых белков в клетках эукариот обеспечивается специфическими белками шаперонами , а так же фолдазами и изомеразами .

Поскольку условия, необходимые для поддержания эукариотических рекомбинантных белков в растворимой форме, не могут быть реализованы в бактериальных клетках, в них происходит агрегация рекомбинантных белков с образованием телец включения. Не существует универсального метода, позволяющего получать рекомбинантные эукариотические белки в бактериальных клетках в нативном виде. В некоторых случаях уже понижение температуры выращивания рекомбинантных бактерий до 30o приводит к образованию полностью растворимых рекомбинантных белков. Это наблюдали в случае рекомбинантного гамма-интерферона , A-цепи рицина , щелочного фактора роста фибробластов и в ряде других случаев.

Более универсальным подходом к получению рекомбинантных белков в растворимой форме является обеспечение секретируемого характера их экспрессии, т.е. секреции синтезирующихся рекомбинантных белков в питательную среду. Системы секреции у грамположительных и грамотрицательных бактерий интенсивно изучаются. Получение рекомбинантных эукариотических белков в секретируемой форме высокотехнологично, поскольку значительно облегчает их очистку. Кроме того, у секретируемых белков больше шансов приобрести нативную конформацию, так как сворачивание полипептидных цепей происходит в большом объеме, а следовательно, и более низкой их концентрации, что предотвращает агрегацию полипептидных цепей, не полностью сформировавших свою третичную структуру. Примером эффективного использования секреторной системы E. coli является получение рекомбинантного инсулино-подобного фактора роста I (IGF-I) в секретируемой форме. В этой системе удавалось нарабатывать до 1 г рекомбинантного белка в 1 л бактериальной культуры.

Возможным подходом к эффективному синтезу растворимых рекомбинантных белков в бактериальных клетках является введение экспрессирующихся генов шаперонов в клетки бактерий-хозяев. Так, сверхэкспрессия гомологичного gro-оперона в клетках E. coli, содержащих экспрессирующиеся гены большой и малой субъединиц Rubisco цианобактерии Anacistis nidulans, приводила к 5-10- кратному возрастанию внутриклеточного содержания нативного рекомбинантного белка Rubisco. В некоторых случаях внутриклеточную агрегацию сверхэкспрессирующихся белков удается предотвратить искусственной заменой отдельных аминокислот в полипептидных цепях методами белковой инженерии . Например, удаление семи аминокислот перед спиралью G в N-концевой части полипептидной цепи фрагмента Кленова ДНК-полимеразы I E. coli , а также замена нескольких гидрофобных аминокислот, боковые цепи которых экспонированы на поверхности спирали G, на остатки аспарагина полностью предотвращали внутриклеточную агрегацию фрагмента и образование агрегатов в процессе его очистки. В нативной молекуле ДНК-полимеразы I участок полипептидной цепи, в котором проведены замены, закрыт доменом 5'->3'-экзонуклеазы, отсутствующим у фрагмента Кленова, и не оказывает влияния на агрегационные свойства фермента.

Ссылки: