Нуклеосомы и инициация транскрипции

Результаты биохимических и генетических экспериментов показывают, что присутствие нуклеосом в промоторных участках генов, как правило, ингибирует транскрипцию. Установлено, что пространственное расположение последовательностей нуклеотидов в двух витках ДНК, намотанной вокруг гистонового октамера нуклеосомы, несовместимо со сборкой стабильного инициационного комплекса. Следовательно, для образования функционально активного инициационного комплекса , в состав которого входят РНК-полимераза и факторы транскрипции , необходимо локальное разрушение нуклеосомной структуры хроматина в окрестностях промотора и регуляторных элементов.

При этом реализуются две стратегии: непрерывное существование участка ДНК в виде свободной от нуклеосом последовательности нуклеотидов и индуцированное разрушение нуклеосом. Первый механизм функционирует на промоторах конститутивно транскрибируемых эукариотических генов и обеспечивается белковыми факторами, которые разрушают имеющуюся нуклеосомную структуру данного участка ДНК или препятствуют ее образованию. Описаны три способа осуществления этого механизма:

1) факторы транскрипции успевают взаимодействовать с реплицируемой ДНК до сборки нуклеосом;

2) факторы связываются с соответствующими участками ДНК, содержащими нуклеосомы, и их дестабилизируют;

3) специализированные белки разрушают нуклеосомную структуру в области промоторов неэкспрессирующихся генов.

Все эти механизмы могут функционировать как по отдельности, так и в различных сочетаниях.

Вновь синтезируемая эукариотическая ДНК обладает повышенной чувствительностью к нуклеазам, что указывает на ее более "открытую" структуру по сравнению со структурой в сформированном хроматине интерфазных ядер. Это может отражать наличие промежуточных стадий в сборке нуклеосом или формировании структур хроматина более высокого порядка. Считается, что сборка нуклеосом в реплицирующейся ДНК происходит в два этапа. Вначале гистоны H3 и H4 доставляются к ДНК с помощью фактора сборки хроматина CAF-I (chromatin assembly factor I) , состоящего из трех субъединиц с молекулярными массами 150, 60 и 50 кДа. Вновь синтезируемые гистоны H3 и H4 связываются первыми двумя субъединицами, из которых полипептид с молекулярной массой 150 кДа обладает сильно заряженным доменом, а другой содержит в своем составе WD-повтор (где W и D - аминокислоты Trp и Asn в соответствии с однобуквенным обозначением). На втором этапе к строящимся нуклеосомам добавляются гистоны H2A и H2B, что завершает формирование кoровых частиц нуклеосом.

Исследования in vitro показали, что тетрамеры H3/H4 не исключают взаимодействия факторов транскрипции с соответствующими участками ДНК, как это делают зрелые нуклеосомы. С другой стороны, нуклеоплазмин, связывающий димеры H2A/H2B, стимулирует взаимодействие различных факторов с нуклеосомами (например GAL4, USF или Sp1). Кроме того, незрелый хроматин характеризуется пониженным содержанием линкерного гистона H1, присутствие которого стабилизирует нуклеосомы и структуры хроматина высшего порядка.

Конкурентные отношения между активацией транскрипции и созреванием хроматина во время клеточного цикла были продемонстрированы in vivo для дрожжевых генов, локализованных вблизи теломерных участков хромосом. У таких генов может иметь место мозаичный эффект положения, например, транслокация гена Ura3 в область теломеры подавляет его транскрипцию, которая может быть возобновлена под действием белка-трансактиватора транскрипции Ppr1, но только в фазе G2/M клеточного цикла. Именно в это время происходит полное созревание вновь образуемого хроматина у большинства эукариотических организмов. Однажды установившись, активированное или репрессированное состояние гена вблизи теломерных участков хромосом поддерживается на протяжении многих клеточных делений.

Эти эксперименты показывают, что во время сборки хроматина имеется возможность перепрограммирования компетентности генов в отношении транскрипции и регуляторная структура хроматина является наследуемой в ряду клеточных поколений.

Промоторы, активируемые через разрушение нуклеосомной структуры непосредственно факторами транскрипции, характерны для генов теплового шока дрозофилы. В поддержании открытой структуры ДНК в этом случае участвуют основные факторы транскрипции, а также GAGA-фактор, которые взаимодействуют с промотором в окрестностях TATA-бокса и точки инициации транскрипции. Такое взаимодействие обеспечивает открытое состояние вышерасположенного регуляторного элемента теплового шока. При индуцированном механизме разрушения нуклеосомной структуры ДНК в окрестностях промотора перед активацией гена нуклеосомы присутствуют как в вышерасположенных регуляторных последовательностях ДНК, так и в самом промоторе. Во время индукции транскрипции такого гена регуляторные факторы, связываясь с ДНК, прямо или косвенно вызывают разрушение нуклеосомной структуры соответствующих участков ДНК.

Аналогичная стратегия активации промоторов реализуется также и в генах, регулируемых глюкокортикоидами. Для активации промоторов, структурированных в нуклеосомы, требуется несколько этапов. Вначале регуляторные факторы взаимодействуют своими ДНК- связывающими доменами с соответствующей регуляторной последовательностью, расположенной выше промотора, что сопровождается вытеснением части или всех гистонов нуклеосом этой последовательности.

Активирующие домены белковых факторов транскрипции далее индуцируют освобождение гистонов с основного промотора, что сопровождается образованием инициационного комплекса с участием РНК-полимеразы и основных факторов транскрипции. Сборка транскрипционного комплекса приводит к вытеснению еще одной порции гистонов с промотора.

Ссылки: