Бескислородный фотосинтез эубактерий: экзогенные доноры электронов

Нециклический транспорт электронов приводит к тому, что электрон, оторвавшийся от молекулы хлорофилла , не возвращается к ней, а переходит на другие переносчики, с которых потом используется в системе реакций восстановительной природы. В результате в молекуле хлорофилла возникает электронная "вакансия", которую необходимо заполнить, чтобы молекула пигмента могла функционировать. Для этой цели сформировался поток электронов, донорами которых являются легко окисляемые экзогенные вещества.

В качестве веществ - экзогенных доноров электронов - используются как органические, так и неорганические соединения. В последнем случае это в основном различные восстановленные соединения серы (H2S, сульфит, молекулярная сера, тиосульфат, тетратионат, тиогликолят), а также молекулярный водород.

Что представляют собой сформировавшиеся у эубактерий, осуществляющих бескислородный фотосинтез, пути переноса электронов от экзогенных доноров? Окислительно-восстановительные потенциалы органических и неорганических соединений, используемых в качестве экзогенных доноров электронов, таковы, что эти соединения не могут осуществлять темновое восстановление НАД+ . В то же время они достаточно отрицательны, чтобы обеспечить донирование электронов на молекулы бактериохлорофилла реакционного центра. (Исключение составляет молекулярный водород, окислительно-восстановительный потенциал которого (-420 мВ) достаточен для темнового восстановления НАД- .

У пурпурных и зеленых нитчатых бактерий , у которых функционирует только светозависимый циклический электронный транспорт , нет надобности в заполнении электронной "вакансии" в молекуле хлорофилла. В то же время проблема получения фотохимическим путем восстановителя не решена.

Конкретные пути, ведущие к получению восстановленного НАД или ферредоксина , зависят от окислительно-восстановительного потенциала экзогенных доноров электронов. При окислении сукцината , например, электроны прямо поступают на хиноновые соединения и от них с помощью энергозависимого обратного электронного транспорта на НАД+ и ферредоксин. При окислении восстановленных соединений серы, потенциал которых недостаточно отрицателен для восстановления хинонов , электроны поступают на них не прямо, а через реакционные центры ( рис. 75 , А). В их переносе до реакционного центра участвуют растворимые и связанные с мембраной флавопротеины и цитохромы .

Функционирование фотохимического пути образования восстановителя у зеленых серобактерий и гелиобактерий ставит их перед проблемой заполнения возникающих электронных "вакансий" в молекулах бактериохлорофилла реакционного центра. Это достигается путем переноса электронов по электрохимическому градиенту от экзогенного донора к молекулам пигмента. В переносе участвуют растворимые и связанные с мембраной цитохромы типа b и с ( рис. 75 , Б). Таким образом, на определенном этапе эволюции эубактерий сформировался способ получения энергии, в основе которого лежит использование энергии света, и для функционирования этого пути необходимы определенные экзогенные вещества.

Можно только предполагать, как складывались механизмы для более эффективного использования этого вида энергии. На первых этапах, когда в окружающей среде содержалось достаточное количество восстановленных органических соединений, свет, вероятно, использовался в качестве дополнительного к субстратному фосфорилированию источника энергии. Чтобы осуществить эту функцию, необходимо трансформировать энергию света в химическую энергию в форме АТФ . Для этого достаточно было сформирования фотоиндуцированного циклического электронного транспорта , приводящего только к синтезу АТФ. Потребность в восстановителе обеспечивалась за счет органических соединений, содержавшихся во внешней среде.

Постепенное уменьшение содержания в среде восстановленных органических субстратов привело существовавшие тогда фототрофные организмы к необходимости расширить круг используемых источников углерода. Они приобрели способность усваивать в качестве такого источника углекислоту. Возникновение этой способности остро поставило вопрос об источнике электронов, необходимых для восстановления углекислоты до уровня восстановленновленности углеродсодержащих соединений клетки. Световая энергия стала использоваться не только для получения АТФ, но и для образования восстановителя, т.е. сформировался нециклический путь переноса электронов . Отток электронов на конструктивные процессы необходимо было компенсировать притоком электронов, способных заполнить электронную "вакансию" в молекуле хлорофилла.

Происходил постоянный поиск в окружающей среде соединений, которые могли бы выполнять функцию экзогенных донор электронов. Определенным шагом вперед была большая независимость от органических соединений внешней среды, выразившаяся в способности использовать в качестве экзогенных доноров электронов восстановленные соединения серы.

Ссылки: