Молекулярный кислород в метаболизме прокариот

Тот факт, что все существующие на Земле прокариоты, даже строгие анаэробы , в присутствии О2 его поглощают, указывает на осуществление ими каких-то реакций взаимодействия с молекулярным кислородом. По отношению к О2 все прокариоты могут быть разделены на несколько физиологических групп ( рис. 34 ). Такое подразделение говорит о необходимости или вреде молекулярного кислорода, но не раскрывает механизмов взаимодействия с ним клетки. Действительно, сейчас мы знаем, что О2 может быть необходим клетке для получения энергии или же для осуществления всего одной реакции, не имеющей энергетического значения.

На основании изучения энергетических процессов, происходящих в митохондриях животных клеток, В.П.Скулачев предложил следующую классификацию реакций взаимодействия клетки с молекулярным кислородом ( рис. 89 ). Порцию поглощенного клеткой О2 можно разделить на две неравные части. Основная масса кислорода потребляется клеткой с участием клеточных ферментных систем. Поглощение клеткой какой-то части О2 не связано с ее ферментными системами. Иллюстрацией последнего служит хорошо известный факт активного поглощения кислорода суспензией убитых прогреванием клеток. В этом случае поглощение кислорода - чисто химический процесс, связанный с окислением определенных химических веществ клетки, например SH-гpynn клеточных белков. Нельзя исключить возможность протекания процессов аналогичной природы и в суспензии живых клеток.

В свою очередь, ферментативное поглощение молекулярного кислорода - дыхание - подразделяется на окисление, сопряженное с запасанием энергии, и свободное окисление, т.е. не связанное с запасанием энергии для клетки.

Окислительные ферментативные реакции с участием О2, относимые к категории свободного окисления, - это реакции, в результате которых энергия выделяется в виде тепла. (Реакции свободного окисления имеют важное значение в осуществлении терморегуляции у животных при охлаждении организма). К этой категории процессов относятся реакции, катализируемые моно- и диоксигеназами, в которых имеет место прямое включение кислорода в молекулу окисляемого вещества, а также реакции, катализируемые некоторыми оксидазами.

Ферментативное поглощение О2, сопряженное с запасанием энергии, подразделяется на процессы, не связанные с фосфорилированием , и процессы, сопровождающиеся фосфорилированием. В первом случае окисление, сопряженное с запасанием энергии, не связано с трансформированием свободной энергии в форму макроэргических фосфатных связей. Известно, что в клетке существуют две универсальные формы энергии: химическая и электрохимическая ( дельта мюН+ ). Один из путей получения энергии в форме трансмембранного электрохимического градиента Н+ связан с переносом электронов на О2. Энергия в этой форме может использоваться клеткой для совершения разного вида работы ( рис. 27 ). Химическая энергия заключена в основном в соединениях, содержащих макроэргические фосфатные связи, и в первую очередь в молекулах АТФ . Но на промежуточных этапах катаболических процессов, связанных в конечном итоге с поглощением О2, образуются метаболиты, содержащие богатые энергией связи, например тиоэфирные (C-S-Ко А). Эти соединения могут непосредственно обеспечивать энергией некоторые биосинтетические процессы.

Наконец, при фосфорилирующем окислении энергия, высвобождаемая при электронном транспорте на молекулярный кислород и возникающая первоначально в форме дельта мю Н+ с помощью протонной АТФ-синтазы трансформируется в химическую форму в молекулах АТФ. В отличие от высших организмов, где достигнута высокая степень сопряжения между переносом электронов и фосфорилированием, т.е. этот путь предстает уже в сложившемся виде, у современных прокариот мы обнаруживаем различные пути переноса электронов и разные степени сопряжения электронного транспорта с фосфорилированием. Все перечисленные типы окислительных процессов с участием О2, протекающие в высокоорганизованной клетке, обнаруживаются и у прокариот.

В основу классификации, предложенной В. П. Скулачевым, положено рассмотрение всех реакций взаимодействия клетки с молекулярным кислородом под углом зрения их "энергетической значимости". По химическим механизмам, лежащим в основе этих реакций, все они могут быть разделены на 2 типа. К первому типу относятся реакции, катализируемые кислородными трансферазами, или диоксигеназами, в которых имеет место прямое присоединение молекулы кислорода к молекуле метаболита:

A + О2 приводит к AО2

Одна молекула субстрата может акцептировать оба атома молекулы кислорода, как это имеет место в приведенной выше реакции. Акцепторами О2 могут быть молекулы двух разных субстратов:

Х + У + О2 приводит к ХО + УО

Все подобные реакции представляют собой свободное окисление и не связаны с получением клеткой энергии.

В реакциях второго типа электроны идут к кислороду, выполняющему функцию конечного акцептора. В этом случае 1, 2 или 4 электрона в зависимости от природы переносчика акцептируются молекулой кислорода, что приводит в конечном итоге к ее неполному (О2-, Н2О2) или полному (Н2О) восстановлению. Реакции данного типа катализируются ферментами, называемыми оксидазами , и могут представлять собой свободное окисление и окисление, сопряженное с запасанием энергии. К реакциям свободного окисления относятся реакции, катализируемые растворимыми оксидазами, локализованными в цитозоле клетки. Помимо них у прокариот описан ряд связанных с мембранами оксидаз цитохромной и нецитохромной природы, перенос электронов с которых на О2 также не сопряжен с запасанием энергии.

Промежуточными по химическому механизму реакциями между приведенными выше являются реакции, в которых судьба каждого из двух атомов в молекуле кислорода различна:

A + О2 + ДН2 приводит к AО + Н2О + Д

В этом случае 1 атом поглощенной молекулы кислорода используется для окисления вещества путем прямого присоединения к нему, а другой восстанавливается до Н2О в присутствии подходящего донора электронов. Обе реакции катализируются одним ферментом, принадлежащим к группе монооксигеназ, или оксигеназ (оксидаз) со смешанными функциями. Монооксигеназы в клетке многочисленны и разнообразны. Они катализируют реакции свободного окисления. Участие в процессах, сопряженных с запасанием клеткой энергии, маловероятно.

Таким образом, оксигеназы - это ферменты, катализирующие активирование О2 и последующее включение 1 или 2 его атомов в молекулы различных субстратов. Если субстратом (акцептором О2) служит водород, фермент называют оксидазой. В этом смысле оксидазы можно рассматривать как специализированный класс оксигеназ.

Оксигеназы играют важную роль в процессах биосинтеза, деградации и трансформации клеточных метаболитов: ароматических аминокислот, липидов, сахаров, порфиринов, витаминов. Субстратами, на которые воздействуют оксигеназы, часто служат сильно восстановленные не растворимые в воде соединения; их окисление приводит к тому, что продукты реакции становятся более растворимыми в воде и, следовательно, биологически активными, что важно для их последующего метаболизирования. У строго анаэробных прокариот кислород, включаемый в молекулу субстрата, происходит не из О2, а из других соединений, например воды.

Следовательно, всю совокупность взаимодействия молекулярного кислорода с клеткой, с точки зрения лежащих в основе этого химических механизмов, можно свести к участию О2 в двух типах реакций, в первом из которых он выступает в качестве конечного акцептора электронов, а во втором происходит его прямое внедрение в молекулу вещества. Только первый тип реакций с участием молекулярного кислорода может стать источником энергии для клетки. Поэтому для нас важно проанализировать эволюцию взаимодействия клетки с О2 по пути формирования ею систем, включающих использование молекулярного кислорода в качестве конечного акцептора электронов.

Ссылки: