Цианобактерии: метаболизм

Клетки цианобактерий, за исключением принадлежащих к роду Gloeobacter , характеризуются развитой системой внутрицитоплазматических мембран (тилакоидов), в которых локализованы компоненты фотосинтетического аппарата . Единственная энергопреобразующая мембрана Gloeobacter - цитоплазматическая, где локализованы процессы фотосинтеза и дыхания.

Цианобактерии интересны из-за сосредоточения в них разнообразных физиологических возможностей. В недрах этой группы, вероятно, формировался и в целом оформился фотосинтез, основанный на функционировании двух фотосистем, характеризующийся использованием Н2О в качестве экзогенного донора электронов и сопровождающийся выделением О2.

У цианобактерий обнаружена способность к бескислородному фотосинтезу , связанная с отключением II фотосистемы при сохранении активности I фотосистемы ( рис. 75 , В). В этих условиях у них возникает потребность в иных, чем Н2О, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, Na2S2O3), H2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом , связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерий из разных групп, но активность фиксации СО2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции СО2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Oscillatoria limnetica , выделенная из озера с высоким содержанием сероводорода. Способность цианобактерий переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение.

Хотя подавляющее большинство цианобактерий являются облигатными фототрофами , в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерий обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген, катаболизируемый по окислительному пентозофосфатному циклу, обеспечивающему полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ*Н2 водород поступает в дыхательную цепь, конечным акцептором электронов в которой служит О2.

О. limnetica, осуществляющая активный фотосинтез бескислородного типа, оказалась также способной в темноте в анаэробных условиях при наличии в среде серы осуществлять перенос электронов на молекулярную серу, восстанавливая ее до сульфида . Таким образом, анаэробное дыхание также может поставлять цианобактериям в темноте энергию. Однако насколько широко распространена такая способность среди цианобактерий, неизвестно. Не исключено, что она свойственна культурам, осуществляющим бескислородный фотосинтез.

Другой возможный путь получения цианобактериями в темноте энергии - гликолиз . У некоторых видов найдены все ферменты, необходимые для сбраживания глюкозы до молочной кислоты, однако образование последней, а также активности гликолитических ферментов низки. Кроме того, содержание АТФ в клетке в анаэробных условиях резко падает, так что, вероятно, жизнедеятельность цианобактерий только за счет субстратного фосфорилирования поддерживаться не может.

У всех изученных цианобактерий ЦТК из-за отсутствия альфа- кетоглутаратдегидрогеназы "не замкнут" ( рис. 85 ). В таком виде он не функционирует в качестве пути, ведущего к получению энергии, а выполняет только биосинтетические функции. Способность в той или иной степени использовать органические соединения для биосинтетических целей присуща всем цианобактериям, но только некоторые сахара могут обеспечивать синтез всех клеточных компонентов, являясь единственным или дополнительным к СО2 источником углерода.

Цианобактерии могут ассимилировать некоторые органические кислоты, в первую очередь ацетат и пируват , но всегда только в качестве дополнительного источника углерода. Метаболизирование их связано с функционированием "разорванного" ЦТК и приводит к включению в весьма ограниченное число клеточных компонентов ( рис. 85 ). В соответствии с особенностями конструктивного метаболизма у цианобактерий отмечают способность к фотогетеротрофии или облигатную привязанность к фотоавтотрофии. В природных условиях  цианобактерии часто осуществляют конструктивный метаболизм смешанного (миксотрофного) типа.

Некоторые цианобактерии способны к хемогетеротрофному росту. Набор органических веществ, поддерживающих хемогетеротрофный рост, ограничен несколькими сахарами. Это связывают с функционированием у цианобактерий в качестве основного катаболического пути окислительного пентозофосфатного цикла , исходным субстратом которого служит глюкоза. Поэтому только последняя или сахара, ферментативно легко превращаемые в глюкозу, могут метаболизироваться по этому пути.

Одна из загадок метаболизма цианобактерий - неспособность большинства из них расти в темноте с использованием органических соединений. Невозможность роста за счет субстратов, метаболизируемых в ЦТК , связана с "разорванностью" этого цикла. Но основной путь катаболизма глюкозы - окислительный пентозофосфатный цикл - функционирует у всех изученных цианобактерий. В качестве причин называют неактивность систем транспорта экзогенных сахаров в клетку, а также низкую скорость синтеза АТФ , сопряженного с дыхательным электронным транспортом, вследствие чего количество вырабатываемой в темноте энергии достаточно только для поддержания клеточной жизнедеятельности, но не роста культуры.

Цианобактерий, в группе которых, вероятно, сформировался кислородный фотосинтез , впервые столкнулись с выделением О2 внутри клетки. Помимо создания разнообразных систем защиты от токсических форм кислорода, проявляющихся в устойчивости к высоким концентрациям О2, цианобактерии адаптировались к аэробному способу существования путем использования молекулярного кислорода для получения энергии.

В то же время для ряда цианобактерий показана способность расти на свету в строго анаэробных условиях. Это относится к видам, осуществляющим фотосинтез бескислородного типа ,  которые в соответствии с принятой классификацией следует отнести к факультативным анаэробам. (Фотосинтез любого типа по своей природе - анаэробный процесс. Это хорошо видно в случае фотосинтеза бескислородного типа и менее очевидно для кислородного фотосинтеза.) Для некоторых цианобактерий показана принципиальная возможность протекания темновых анаэробных процессов ( анаэробное дыхание , молочнокислое брожение ), однако низкая активность ставит под сомнение их роль в энергетическом метаболизме цианобактерий. Зависимые и не зависимые от О2 способы получения энергии, обнаруженные в группе цианобактерий, суммированы в табл. 28 .

Конструктивный метаболизм цианобактерий представляет собой шаг вперед по пути дальнейшей независимости от органических соединений внешней среды по сравнению с пурпурными серобактериями и зелеными серобактериями . Для построения всех веществ клетки цианобактериям нужен минимум простых неорганических соединений: углекислота, самые простые формы азота (аммонийные, нитратные соли или молекулярный азот), минеральные соли (источники фосфора, серы, магния, железа, микроэлементов), вода. Цианобактерии не требуют никаких питательных компонентов в восстановленной форме. Только некоторые морские виды обнаруживают потребность в витамине В12.

Ссылки: