Окислительный пентозофосфатный путь: начальный этап

Схема начальных этапов окислительного пентозофосфатного пути представлена на рис. 64 . Первая реакция заключается в фосфорилировании глюкозы с помощью АТФ и превращении ее в метаболически активную форму глюкозо-6-фосфата, аналогично тому, что имеет место на первом этапе гликолиза . Следующий этап заключается в дегидрировании глюкозо-6- фосфата, катализируемом глюкозо-6-фосфат-дегидрогеназой. Особенность реакции в том, что в ней участвует НАДФ+ в качестве акцептора водорода. Образовавшийся продукт реакции очень нестоек и спонтанно или с помощью фермента лактоназы гидролизуется с образованием 6-фосфоглюконовой кислоты , которая подвергается окислительному декарбоксилированию , катализируемому фосфоглюконатдегидрогеназой. Эта реакция приводит к образованию соответствующего пентозофосфата, НАДФ*Н2 и выделению СО2. Рибулозо-5- фосфат обратимо превращается в ксилулозо-5-фосфат и рибозо-5-фосфат с участием ферментов фосфопентозоэпимеразы и фосфопентозоизомеразы соответственно.

Суммарно весь процесс можно представить в виде следующего уравнения:

глюкозо-6-фосфат + 2НАДФ+ переходит обратимо в

рибозо-5-фосфат + СО2 + 2НАДФ*Н2.

Как видно, на этом этапе образуются 2 молекулы НАДФ*Н2, которые могут потребляться в восстановительных биосинтетических процессах, и молекула рибозо-5-фосфата, используемого в синтезе нуклеиновых кислот и пентозосодержащих коферментов. (Некоторые авторы считают, что особенность окислительного пентозофосфатного пути - перенос электронов на окислительных этапах на НАДФ+, а не на НАД+ - в последующем оказалась очень "выгодной" для аэробов , так как позволила иметь два отдельных пула восстановленных пиридиновых переносчиков, с одного из которых ( НАД*Н2 ) электроны поступали в дыхательную цепь, а с другого ( НАДФ*Н2 ) использовались в биосинтетических восстановительных реакциях.

Примечательно, что ни на одном из окислительных этапов не синтезируется АТФ .

Первоначально окислительный пентозофосфатный путь возник, вероятно, для обеспечения эубактерий пентозами. В этом случае возникновение только трех новых ферментов (глюкозо-6- фосфатдегидрогеназы, лактоназы и фосфоглюконатдегидрогеназы) уже приводило к синтезу пентоз. Поскольку к этому времени функционировали изомеразные ферменты гликолитического пути ( рис. 53 ), формирование фосфопентозоизомеразы произошло довольно легко. Действительно, при определенных условиях окислительный пентозофосфатный путь на этом завершается.

Дальнейшее его развитие, вероятно, связано с энергетическими потребностями клетки. Меньшей части образующегося рибозо-5-фосфата оказалось достаточно для удовлетворения всех потребностей клетки в пентозах. Остальная часть синтезируемого пентозофосфата была субстратом, хранившим в себе большие запасы энергии. Способность использовать в энергетических целях этот субстрат связана с возникновением двух ферментов: фосфопентозоэпимеразы, катализирующей превращение рибулозо-5- фосфата в ксилулозо-5-фосфат ( рис. 64 ), и пентозофосфокетолазы, катализирующей расщепление ксилулозо-5-фосфата на 3-ФГА и ацетилфосфат ( рис. 65 ).

Использование в качестве источника энергии в анаэробных условиях пентозных субстратов, образуемых в окислительном пентозофосфатном пути, свойственно группе гетероферментативных молочнокислых бактерий , для которых характерно образование в качестве конечных продуктов брожения ряда органических соединений: молочной и уксусной кислот, этилового спирта, глицерина, СО2 и др. Этим гетероферментативные молочнокислые бактерии отличаются от гомоферментативных молочнокислых бактерий , почти полностью сбраживающих гексозы по гликолитическому пути в молочную кислоту .

Изучение механизмов образования конечных продуктов брожения гетероферментативными молочнокислыми бактериями обнаружило, что они связаны с дальнейшими различными путями метаболизирования С2- и С3- фрагментов фосфокетолазной реакции. 3-ФГА претерпевает ряд ферментативных превращений, идентичных таковым гликолитического пути , и через пируват превращается в молочную кислоту. Судьба двухуглеродного фрагмента различна: двухступенчатое восстановление ацетилфосфата приводит к накоплению в среде этанола ; окислительный путь превращения ацетилфосфата завершается образованием уксусной кислоты ( рис. 65 ).

Преобладание в ферментационной среде того или иного продукта зависит от вида культуры, условий культивирования и фазы развития. Гетероферментативные молочнокислые бактерии Leuconostoc mesenteroides сбраживают глюкозу в молочную кислоту, этанол и СО2 по следующему уравнению:

С6Н12О6 переходит в СН3-СНОН-СООН + СН3-СН2ОН + СО2.

У других гетероферментативных молочнокислых бактерий больший удельный вес занимают процессы, ведущие к накоплению уксусной кислоты . Образование уксусной кислоты из ацетилфосфата сопряжено с синтезом АТФ . Если брожение идет с образованием этанола, то выход энергии равен 1 молекуле АТФ на молекулу сброженной глюкозы; если образуется уксусная кислота, то общий энергетический баланс процесса составляет 2 молекулы АТФ на молекулу глюкозы, т.е. такой же, как при гликолизе .

Окислительный пентозофосфатный путь функционирует в качестве единственного пути сбраживания углеводов у облигатных гетероферментативных молочнокислых бактерий. Эти бактерии лишены ключевых ферментов гликолитического пути, например альдолазы и триозофосфатизомеразы.

Большинство молочнокислых бактерий имеют два пути сбраживания углеводов: гликолитический и окислительный пентозофосфатный. Сбраживание гексоз, как правило, протекает по гликолитическому пути, а пентоз - по окислительному пентозофосфатному. Это имеет место, например, у Lactobacillus plantarum . Ферменты окислительного пентозофосфатного пути обнаружены у клостридиев .

Таким образом, возникнув сначала как механизм синтеза клеткой С5- соединений, т.е. для выполнения узкой специфической задачи, этот путь получил дальнейшее развитие и стал выполнять дополнительную функцию снабжения эубактерий энергией в анаэробных условиях. Субстратная база для окислительного пентозофосфатного пути позднее была расширена, так как он стал использоваться и для сбраживания пентоз биогенного происхождения, накапливавшихся в окружающей среде.

Ссылки: