Тионовые бактерии

Использование процесса окисления серы и ее неорганических восстановленных соединений для получения клеточной энергии показано для группы тионовых бактерий, представленных родами Thiobacillus , Thiomicrospira , Thiodendron и др. Это одноклеточные организмы разной морфологии и размеров; неподвижные или подвижные (движение осуществляется с помощью полярно расположенных жгутиков ); бесспоровые. Размножаются делением или почкованием. Имеют клеточную стенку грамотрицательного типа. Для некоторых представителей рода Thiobacillus характерна развитая система внутрицитоплазматических мембран.

Для тионовых бактерий показана способность окислять с получением энергии помимо молекулярной серы (S0) многие ее минеральные восстановленные соединения: сульфид (S--), тиосульфат (S2O3--), сульфит (SO3--), тритионат (S3O6--), тетратионат (S4O6--). Некоторые тионовые бактерии могут получать энергию за счет окисления тиоцианата (CNS-), диметилсульфида (CH3SCH3), диметилдисульфида (CH3SSCH3), а также сульфидов тяжелых металлов. Там, где в качестве промежуточного продукта окисления образуется молекулярная сера, она откладывается вне клетки. Thiobacillus ferrooxidans получает энергию, окисляя также двухвалентное железо.

Полное ферментативное окисление тионовыми бактериями молекулярной серы и различных ее восстановленных соединений приводит к образованию сульфата . Окисление сероводорода до сульфата сопровождается потерей 8 электронов, поступающих в дыхательную цепь, при этом в качестве промежуточных продуктов образуется молекулярная сера и сульфит:

H2S приводит к S0 приводит к SO3-- приводит к SO4--

На этапе окисления сульфита до сульфата, протекающего с образованием аденилированного промежуточного соединения денозинфосфосульфата (АФС), имеет место субстратное фосфорилирование, позволяющее запасать освобождающуюся при этом энергию в молекулах АТФ :

SO3-- + АМФ приводит к АФС + 2е;

АФС + Фн приводит к SO4-- + АДФ

Далее с помощью аденилаткиназы из АДФ синтезируется АТФ:

2АДФпереходит в АМФ + АТФ

Основное же количество энергии тионовые бактерии получают в результате переноса образующихся при окислении восстановленной серы электронов, поступающих в дыхательную цепь на уровне цитохрома а ( рис. 97 ). Дыхательная цепь тионовых бактерий содержит все типы переносчиков, характерных для аэробных хемогетеротрофов . У тионовых бактерий обнаружены флавопротеины , убихиноны , FeS-белки , цитохромы типа b, с, цитохромоксидазы о, d, a+а3.

В большинстве случаев конечным акцептором электронов служит О2, который не может быть заменен никаким другим акцептором. Рост отдельных штаммов возможен в микроаэробных условиях. Некоторые тионовые бактерии являются факультативными аэробами ; они могут использовать в качестве конечного акцептора электронов не только О2, но и нитраты , восстанавливая их до N2 или только до нитрита . В анаэробных условиях использование нитратов в качестве конечного акцептора электронов индуцирует синтез диссимиляционной нитратредуктазы, осуществляющей перенос электронов дыхательной цепи на нитраты.

Некоторые виды относятся к облигатным хемолитоавтотрофам , другие - могут расти как хемолитоавтотрофно, так и хемоорганогетеротрофно , используя в последнем случае в качестве источника углерода и энергии ряд органических соединений (кислоты, сахара, спирты, аминокислоты). Наконец, описаны тионовые бактерии, растущие хемолитогетеротрофно , используя в качестве источника углерода только органические соединения, а энергию получая за счет окисления восстановленных соединений серы. Основным механизмом ассимиляции СО2 служит восстановительный пентозофосфатный цикл , обнаруженный у всех тионовых бактерий. Вспомогательную роль играют реакции карбоксилирования трехуглеродных соединений, в первую очередь фосфоенолпировиноградной кислоты .

Поскольку у тионовых бактерий место включения электронов в дыхательную цепь находится на уровне цитохрома с, у них функционирует система обратного переноса электронов для обеспечения конструктивных процессов молекулами НАД*Н2 .

У разных представителей этой группы, способных расти, используя органические соединения, обнаружены активности ферментов гликолиза , окислительного пентозофосфатного пути , пути Энтнера-Дудорова . Описано функционирование "замкнутого" и "разорванного" ЦТК , а у некоторых тиобацилл - глиоксилатного шунта .

Тионовые бактерии приспособлены к разным условиям обитания. Thiobacillus thiooxidans и Thiobacillus ferrooxidans - ярко выраженные ацидофилы (оптимальный рН 2-4), Thiobacillus denitrificans и Thiobacillus thioparus , наоборот, развиваются только в нейтральной и щелочной среде (рН 7-10). Большинство тиобацилл относятся к мезофилам с оптимальной температурой роста приблизительно 30 градусов по С. Описаны термофильные штаммы, растущие при 60-70 градусов по С.

Ссылки: