Темновая стадия фотосинтеза

На рис. 37 схематически изображены события, происходящие в световой и темновой фазах фотосинтеза, и связь между ними. Свет нужен только для того, чтобы в хлоропластах шел синтез АТФ и НАДФН. Последующий синтез гексоз может идти и в темноте, для этого энергия солнечного света не нужна. Изолированные хлоропласты под действием света осуществляют фотосинтез - поглощают CO2, и в них образуется глюкоза. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если в среду с хлоропластами добавить АТФ и НАДФН, то синтез глюкозы возобновится и может идти в полной темноте. Опыты показали, что свет действительно нужен только для синтеза АТФ и НАДФН. В этом значение световой фазы фотосинтеза. Темновая фаза фотосинтеза, как понятно теперь, получила свое название благодаря тому, что хотя она идет при освещении, но может происходить и в темноте при условии, что в клетке, в хлоропластах, имеются заготовленные впрок или добавленные извне молекулы АТФ и НАДФН.

На второй (темновой) стадии фотосинтеза химическая энергия (в виде АТФ ), запасенная в ходе световой реакции, используется для восстановления углерода. Углерод доступен для фотосинтезирующих клеток в виде диоксида углерода, причем настоящие водоросли , багрянки и цианобактерии усваивают СО2, растворенный в воде. У высших растений диоксид углерода поступает к фотосинтезирующим клеткам через устьица.

Восстановление углерода происходит в строме хлоропласта в цикле реакций, известных как цикл Кальвина (по имени М.Кальвина, Нобелевская премия 1961 г. за его открытие), аналогичный циклу Кребса , поскольку в конце цикла происходит регенерация исходного соединения.

См. Восстановительный пентозофосфатный цикл (цикл Кальвина)

Исходное (или конечное) соединение цикла Кальвина - пятиуглеродный сахар, фосфорилированный двумя фосфатными остатками - рибулозо-1,5-бифосфат (РБФ) . СО2 входит в цикл и фиксируется на РБФ. Образуемое при этом шестиуглеродное соединение затем расщепляется на две молекулы 3-глицерофосфата. Каждая молекула 3-глицерофосфата содержит 3 атома углерода, в силу чего другое название цикла Кальвина - С3-путь (говорят еще о С3-типе фотосинтеза и о С3-растениях). Катализирует эти ключевые реакции фермент рибулозобифосфаткарбоксилаза. Он располагается на поверхности тилакоидов . Упрощенная схема цикла Кальвина представлена на рисунке 28 . В течение каждого оборота цикла одна молекула СО2 восстанавливается, а молекула РБФ регенерируется и вновь может участвовать в следующем аналогичном цикле.

Шестиуглеродный сахар глюкоза образуется в результате шести оборотов цикла, которые ведут к "поглощению" 6 молекул СО2.

Суммарное уравнение синтеза глюкозы в ходе цикла Кальвина можно записать следующим образом:

6СО2+12NADН2+18АТФ-+С6Н12О6+12NAD+18АДФ+18Ф+6Н2О.

Цикл Кальвина - не единственный путь фиксации углерода в темновых реакциях. У некоторых растений первый продукт фиксации СО2 - не трехуглеродная молекула 3-глицерофосфата, а четырехуглеродное соединение - оксалоацетат. Отсюда этот путь фотосинтеза получил название С4-пути (С4-растения). Оксалоацетат затем быстро превращается либо в малат, либо в аспартат, которые переносят СО2 к РБФ цикла Кальвина . Существует особая анатомическая структура в мезофиле листа ( кранц-структура ), сопряженная с С4-путем фотосинтеза. У С4-растений цикл Кальвина осуществляется по преимуществу в клетках обкладок проводящих пучков, а С4-путь - в клетках мезофилла . Иначе говоря, С4-растения используют оба пути фотосинтеза, но они в пределах одного растения пространственно разделены. С4-растения более экономно утилизируют СО2, чем С3-растения, отчасти благодаря тому, что фосфоенолпируваткарбоксилаза не ингибируется О2 и, таким образом, С4-растения обладают способностью поглощать СО2 с минимальной потерей воды. Кроме того, у С4-растений практически отсутствует фотодыхание - процесс выделения СО2 и поглощения О2 на свету.

С4-растения известны среди 19 семейств цветковых (из них 3 - однодольные и 16 - двудольные ), и, очевидно, этот путь фотосинтеза возник независимо в разных филетических линиях. Однако практически все С4-растения адаптированы к высокой инсоляции, повышенным температурам и засухе. Оптимальная температура для роста и развития таких растений выше, чем у С3-растений; С4-растения процветают даже при температурах, которые губительны для многих С3-видов.

Помимо С3- и С4-путей известен еще так называемый метаболизм органических кислот по типу толстянковых ( CAM-метаболизм , по начальным буквам английских слов crassulacean acid metabolism). Растения, фотосинтезирующие по CAM-типу, могут фиксировать СО2 в темноте с помощью фермента фосфоенолпируваткарбоксилазы, образуя яблочную кислоту, которая запасается в вакуолях . В течение последующего светового периода яблочная кислота декарбоксилируется и СО2 присоединяется РБФ цикла Кальвина в пределах той же клетки. Иначе говоря, CAM-растения также используют оба пути фотосинтеза, но они разделены в пределах одного растения во времени. CAM-метаболизм обнаружен у многих суккулентных пустынных растений, у которых устьица открыты в ночное время и закрыты днем. CAM- растения, как правило, хорошо адаптированы к засухе, но особенности их метаболизма снижают способность к ассимиляции СО2. Поэтому многие CAM- растения (например, кактусы) растут медленно и вне экстремальных условий слабо конкурируют с С3- и С4-растениями.

В составе хлоропластов имеется фермент, который катализирует соединение молекулы углекислого газа - CO2 с производным пятиуглеродного сахара - рибозы (напомним,что такой сахар в кольцевой форме содержится в составе рибонуклеотидов, из которых состоят молекулы РНК). Это производное рибозы, дважды фосфорилированное (по первому и пятому гидроксилам), является 1,5-рибулезодифосфатом. Ферментом, который катализирует конденсацию СО2 с рибулезо-1,5-дифосфатом , является рибулезо-1,5-дифосфаткарбоксилаза . В результате присоединения одной молекулы CO2 к пятиуглеродному рибулезо- 1,5-ди-фосфату (реакция карбоксилирования) образуется шестиуглеродное промежуточное короткоживущее соединение, которое вследствие гидролиза (присоединения молекулы воды) распадается на две трехуглеродные молекулы фосфоглицериновой кислоты . Группа ферментов катализирует ступенчатое образование из двух таких трехуглеродных молекул одной молекулы шестиуглеродного сахара - фруктозо-6-фосфат , который далее превращается в глюкозу . В свою очередь, глюкоза может ферментативно полимеризоваться в клетках в крахмал , который служит энергетическим резервом, поскольку крахмал ферментативно расщепляется до глюкозы и ее окисляют клетки высших растений, когда действие света прекращается, и прекращается фотосинтез. Глюкоза полимеризуется, образуя также молекулы опорных полисахаридов растений - целлюлозу . Одна молекула гексозы - фруктозо-6-фосфата или глюкозы образуется из шести молекул CO2 . При этом для синтеза молекулы гексозы требуется расходовать 18 молекул АТФ и 12 молекул НАДФН . Фиксация CO2 и превращение углерода в углеводы носят циклический характер, так как часть промежуточных углеводов претерпевает процесс конденсации и перестроек до рибулозодифосфата - первичного акцептора CO2, что обеспечивает непрерывную работу цикла. Впервые этот процесс подробно изучил американский биохимик М. Кальвин , в честь которого и получил название - цикл Кальвина .

Роль световой фазы фотосинтеза сводится к тому, чтобы обеспечить энергией АТФ и восстанавливающим соединением НАДФН биосинтез сахаров.

АТФ и НАДФН служат для биосинтеза и множества иных органических соединений в клетке.

Ссылки: