Репликация ДНК эукариот: механизмы
Механизмы репликации ДНК прокариот и эукариот существенно различаются в том отношении, что во втором случае синтез ведущей и отстающей цепей ДНК осуществляют разные ДНК-полимеразы (альфа и дельта соответственно), тогда как у E. coli обе цепи ДНК синтезируются димером ДНК-полимеразы III . ДНК-полимераза альфа проводит инициацию синтеза ведущей цепи в точках начала репликации, а ДНК-полимераза дельта осуществляет циклические реинициации синтеза фрагментов Оказаки , по-видимому, распознавая наличие 5'-концевого нуклеотида очередного праймера с последующей диссоциацией от матричной ДНК и присоединением к ней для реинициации синтеза следующего фрагмента Оказаки.
Созревание фрагментов Оказаки у эукариот требует удаления РНК-затравок с помощью 5'->3'-экзонуклеазы ( белковые факторы FEN-1 или MF-1 ) и РНКазы H1 , а также ковалентного соединения фрагментов друг с другом под действием ДНК-лигазы I .
В настоящее время не известно, что именно служит пусковым сигналом для начала репликации ДНК в S фазе. Инициирующее событие, после которого начинается синтез ДНК, происходит в определенных местах, называемых " репликационные вилки ". Во время S фазы кластеры репликационных вилок активируются одновременно во всех хромосомах.
Положение участков начала репликации в генах может иметь важное биологическое значение . Тот факт, что у ряда вирусов животных репликация начинается в определенных участках генома, позволяет предположить, что места начала репликации представляют собой специализированные последовательности в хромосомной ДНК. Среднее расстояние между местами начала репликации сравнимо со средним расстоянием между соседними петлями хроматина. Таким образом, возможно, что в каждой петле имеется лишь один участок начала репликации.
При расхождении двух репликационных вилок от одной точки начала репликации по разные стороны от этой точки родительские нуклеосомы будут попадать в разные дочерние спирали ДНК. В этом случае от точного расположения места начала репликации в транскрипционной единице будет зависеть распределение предсуществующих родительских гистонов между двуми дочерними генами. Не все нуклеосомы абсолютно одинаковы - в разных областях генетического материала структура хроматина различна. Точное положение места начала репликации в гене могло бы поэтому иметь важное биологическое значение, так как определяло бы структуру хроматина этого гена в следующем поколении клеток.
Пусковой механизм репликации ДНК явно работает по принципу "все или ничего", поскольку начавшаяся в S фазе репликация ДНК продолжается до полного завершения этого процесса. Контроль процесса репликации по принципу "все или ничего" может осуществляться по меньшей мере двумя различными способами:
1) некая общая система может специфически узнавать каждую хромосомную полосу, деконденсировть ее и тем самым делать все точки начала репликации одновременно доступными для белков, ответственных за образование репликационых пузырей ;
2) репликативные белки могут узнавать лишь несколько точек начала репликации из данного набора, после чего начавшаяся локальная репликация будет изменять структуру остального хроматина репликативной единицы таким образом, что станет возможной репликация во всех других начальных точках.
Возможно, что критическим моментом в цепи событий, инициирующих репликацию ДНК, является достижение определенной стадии в процессе удвоения центриоли , которая действует и как часть важного центра организации микротрубочек , тесно связанного с интерфазным ядром, и как компонент каждого из полюсов веретена во время митоза . По-видимому, центриоль удваивается путем матричного процесса один раз за клеточный цикл ( рис. 11-19 ).
Пока не известно также, чем определяется фиксированная последовательность репликации хромосомных полос . Для объяснения такой последовательности было предложено две гипотезы. Согласно одной из них, различные репликативные белки, каждый из которых специфичен в отношении хромосомных полос опредеоенного типа, синтезируются в фазе S в разное время. Согласно другой гипотезе, которая сейчас кажется более правдоподобной, репликативные белки просто действуют на те участки ДНК, которые для них более доступны; например, в течение фазы S может происходить непрерывная деконденсация хромосом, и хромосомные полосы одна за другой становятся доступными для репликативных белков.
ДНК: репликация, временная организация
ДНК: репликация, однократность воспроизведения ДНК