Рибосома: общие сведения

Рибосомы представляют собой крупный рибонуклеопротеидный комплекс с молекулярной массой около 2,5 мДа, состоящий из рибосомных белков, молекул рРНК и ассоциированных с ними факторов трансляции. Рибосомы - немембранные органеллы, на которых происходит синтез белка в клетке. Они представляют собой сферические структуры с диаметром около 20 нм. Эти самые мелкие клеточные органеллы устроены чрезвычайно сложно. Ни одна молекула, входящая в состав рибосом, не повторяется дважды. Лучше других изучены рибосомы бактерии Е. coli (кишечной палочки).

Рибосомы прокариотических и эукариотических организмов различаются по размерам. Электронно-микроскопические изображения рибосом всех известных организмов ясно показывают, что эти частицы  построены из двух неравных субчастиц ( рис. 2 ). Действительно, если в среде, окружающей рибосомы, понизить концентрацию ионов магния или каким-либо еще образом увеличить электростатическое отталкивание фосфатных групп рибосомной РНК, то рибосома  диссоциирует на две неравные субчастицы - большую и малую ( рис. 34 ), с соотношением их масс около 2:1. 

При диссоциации прокариотической субчастицы образуются 30S и 50S субчастицы, а эукариотической - 40S и 60S.  Полные рибосомные частицы и их субчастицы принято обозначать в соответствии с их коэффициентами седиментации (скоростями осаждения, лат. sedimentum - осадок) в ультрацентрифуге, выражаемыми в единицах Сведберга (S). S - коэффициент седиментации, он зависит от молекулярной массы и пространственной конформации частицы, осаждаемой при центрифугировании.  Бактериальная рибосома с молекулярной массой около 3-х миллионов (3 на 10 в степени 6) имеет коэффициент седиментации 70S и обозначается как 70S-частица , а несколько более крупная рибосома эукариотических организмов (животные, растения и грибы) предстает как 80S-частица . Их диссоциация на субчастицы  обратима, и при восстановлении условий субчастицы реассоциируют в полные рибосомные частицы. В целом и электронно-микроскопические наблюдения, и эксперименты по диссоциации рибосом, и более изощренные подходы в изучении этих частиц показывают, что рибосома всегда построена из двух неравных блоков - большой и малой субчастиц и что блоки (субчастицы) рибосомы довольно лабильно ассоциированы друг с другом. 70S рибосомы эубактерий в своем составе содержат 55-60 рибосомных белков, для 80S рибосом эукариот это число составляет 75-85. В обоих случаях рибосомные белки в составе рибосом ассоциированы с молекулами рРНК, образуя пространственно организованные рибонуклеопротеиновые тяжи. 

Коэффициент седиментации бактериальной рибосомы равен 70S, так как нельзя механически складывать 30S и 50S, поскольку конформация ассоциированной рибосомы отличается от конформации каждой субчастицы). 

30S-субчастица состоит из 21 рибосомных белка и одной молекулы 16S рибосомной РНК.  В состав 50S-субчастицы входят 34 молекулы белка и две молекулы рибосомных РНК (23S и 5S). 

В цитоплазме эукариотических клеток находятся рибосомы с коэффициентом седиментации 80S; Они состоят из двух субчастиц -

Большая 60S и малая 40S субчастицы рибосом эукариотических клеток содержат большее количество разных белков, чем соответствующие субчастицы бактериальных рибосом. В митохондриях и хлоропластах тоже содержатся рибосомы. Они больше похожи на 70S бактериальные рибосомы, чем на 80S цитоплазматические рибосомы эукариот. Между синтезом белка в бактериях, митохондриях и хлоропластах имеется много общего.

Генетическая информация, находящаяся в клетке в виде ДНК и воспроизводящаяся в клеточных поколениях путем репликации ДНК , реализуется через биосинтез белка . Для этого отдельные участки ДНК - гены - сначала транскрибируются (переписываются) в виде многочисленных копий РНК (информационной РНК, или мРНК ), а затем эти копии транслируются (прочитываются) белоксинтезирующими частицами клетки - рибосомами , результатом чего является продукция белков, определяющих всю совокупность свойств и признаков организма ( рис. 1 ).

Таким образом, биосинтез белка - это центральный процесс живой клетки: именно через него "мертвые" молекулы нуклеиновых кислот обретают жизнь, химия превращается в биологию. Процесс биосинтеза белка проходит в несколько этапов, в большинстве из которых рибосома принимает активное участие.

1. Транскрипция. Отдельные участки (гены) двунитевой ДНК являются матрицами для синтеза на них однонитевых цепей РНК. Синтезированные цепи РНК комплементарны одной из цепей ДНК и, соответственно, точно воспроизводят дезоксирибонуклеотидную последовательность другой цепи ДНК в своей рибонуклеотидной последовательности.

2. Процессинг и транспорт РНК. РНК в течение синтеза и после него, особенно в эукариотических клетках, может подвергаться ряду дополнительных изменений (добавлению концевых групп, модификации нуклеотидов, вырезанию определенных кусков нуклеотидной последовательности и др.). Получающаяся информационная, или мессенджер РНК ( мРНК ) поступает далее к рибосомам  (у эукариот транспортируется из ядра в цитоплазму) в качестве программы, определяющей аминокислотную последовательность в синтезируемом белке. Далее происходят активация и акцептирование аминокислот. Исходным материалом, из которого строится белок, являются аминокислоты, однако свободные аминокислоты клетки не могут быть непосредственно использованы рибосомой. Каждая аминокислота сначала активируется с помощью АТФ, а затем присоединяется к специальной молекуле РНК, называемой транспортной РНК ( тРНК ), вне рибосомы. Получающаяся аминоацил-тРНК поступает в рибосому в качестве субстрата для синтеза белка.

3. Трансляция. Поток информации в виде мРНК и поток материала в виде аминоацил-тРНК поступают в рибосомы, которые являются молекулярными машинами, осуществляющими перевод, или трансляцию, генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной последовательности синтезируемой полипептидной цепи белка. Каждая рибосома последовательно сканирует цепь мРНК (движется вдоль нее от одного конца к другому) и соответственно выбирает из среды те аминоацил-тРНК, которые соответствуют (комплементарны) триплетным комбинациям нуклеотидов, находящимся в данный момент в рибосоме. Таким образом, движение рибосомы вдоль мРНК задает строгий временной порядок вхождения в рибосому разных аминоацил-тРНК в соответствии с порядком расположения кодирующих нуклеотидных комбинаций (кодонов) вдоль мРНК. Аминокислотный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи, а деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно остаток за остатком строится полипептидная цепь.

4. Формирование функционального белка По мере синтеза полипептидная цепь частично высовывается из рибосомы и начинает сворачиваться в глобулу (котрансляционный фолдинг ), а по завершении синтеза, то есть по прочтении всей мРНК, она освобождается из рибосомы и окончательно сворачивается (посттрансляционный фолдинг). Синтезируемый белок может транспортироваться через клеточные мембраны, что характерно для белков, производимых клеткой для общих нужд организма или клеточной популяции (секретируемые белки). Сворачивание белка и транспорт белка через мембраны может сопровождаться различными ковалентными модификациями с помощью ферментов (процессинг белка) Итак, процесс создания химической структуры белка (синтез полипептидной цепи) и в значительной мере ее физическое сворачивание в функционально активную белковую глобулу осуществляются рибосомой. Количество рибосом в клетке сильно варьирует - от тысяч до десятков тысяч на клетку - в зависимости от интенсивности белкового синтеза в данном типе клеток. Каждая рибосома полностью прочитывает одну молекулу мРНК и в соответствии с ее программой синтезирует одну молекулу белка, после чего может быть запрограммирована другой молекулой мРНК и произвести другую молекулу белка и т.д. Обычно одна молекула мРНК читается сразу несколькими рибосомами, двигающимися вдоль мРНК друг за другом и, таким образом, независимо синтезирующими идентичные молекулы белка, но с соответствующим отставанием. Такой динамический комплекс одной мРНК с несколькими рибосомами называется полирибосомой . Химически рибосома есть рибонуклеопротеид: она состоит из специальной рибосомной РНК и специальных рибосомных белков , находящихся в комплексе друг с другом. Физически рибосома представляет собой компактную частицу специфической формы, лишенную внутренней и внешней симметрии, грубо аппроксимируемую сферой с диаметром около 30 нм. Функционально это молекулярная машина, протягивающая вдоль себя цепь мРНК, считывающая закодированную в мРНК генетическую информацию и параллельно, в соответствии с кодом, синтезирующая полипептидную цепь белка из поступающих в нее аминокислотных остатков. В процессе работы рибосома потребляет энергию гидролиза гуанозинтрифосфата ( ГТФ ). Очевидно, что детальное знание структуры рибосомы является необходимой базой для понимания механизмов работы этой молекулярной машины. В настоящее время полная структура рибосомы на молекулярном уровне еще неизвестна, хотя известно много деталей ее строения. В этой статье делается попытка обобщить многочисленные разрозненные сведения о структуре рибосом и сформулировать основные принципы, лежащие в основе ее молекулярной организации.

На рис. I.18 представлена модель пространственной структуры 70S рибосомы E.coli, разработанная в лаборатории Д. Франка (США).