Прокариоты: характеристика энергетических процессов, фотосинтез

У прокариот известны три способа получения энергии: разные виды брожения , дыхания и фотосинтеза.

У прокариот известны три типа фотосинтеза:

- I - зависимый от бактериохлорофилла бескислородный фотосинтез, осуществляемый группами зеленых бактерий , пурпурных бактерий и гелиобактерий ;

- II - зависимый от хлорофилла кислородный фотосинтез, свойственный цианобактериям и прохлорофитам ;

- III - зависимый от бактериородопсина бескислородный фотосинтез, найденный у экстремально галофильных архебактерий .

В основе фотосинтеза I и II типа лежит поглощение солнечной энергии различными пигментами, приводящее к разделению электрических зарядов, возникновению восстановителя с низким и окислителя с высоким окислительно-восстановительным потенциалом . Перенос электронов между этими двумя компонентами приводит к выделению свободной энергии. В фотосинтезе III типа окислительно-восстановительные переносчики отсутствуют. В этом случае энергия в доступной для организма форме возникает в результате светозависимого перемещения Н+ через мембрану.

Изучение у прокариот электронтранспортных цепей, функционирующих в процессах дыхания и фотосинтеза I и II типов, выявило принципиальное сходство между ними. В обеих системах электронного транспорта есть флавопротеины , хиноны , цитохромы и белки , содержащие негемовое железо, позволяющие переносить электроны вниз по термодинамической лестнице. Таким образом, по существу обе электронтранспортные цепи являются окислительными. Разнообразие в их организации обнаружено при более детальном изучении и выражается как в широком наборе доноров и акцепторов электронов, так и в конкретной организации самих цепей: химическом строении переносчиков, принадлежащих к одному типу, их наборе, расположении и т.д.

В процессах дыхания и фотосинтеза освобождающаяся при переносе электронов энергия запасается первоначально в форме электрохимического трансмембранного градиента ионов водорода ( дельта мю Н+ ), т.е. имеет место превращение химической и электромагнитной энергии в электрохимическую. Последняя затем может быть использована для синтеза АТФ . Поскольку в обоих процессах синтез АТФ обязательно связан с мембранами, реакции, приводящие к его образованию, получили название мембранзависимого фосфорилирования . Последнее подразделяется на два вида: окислительное фосфорилирование (АТФ образуется в процессе электронного переноса при окислении химических соединений) и фотосинтетическое фосфорилирование (синтез АТФ связан с фотосинтетическим электронным транспортом).

Следует подчеркнуть, что принципы генерации АТФ при фотосинтезе и дыхании, т.е. механизмы мембранзависимого фосфорилирования, одинаковы.

Ссылки: