Структура ионных каналов: общие сведения

Молекулярная структура ионных каналов может быть расшифрована и соотнесена с их функцией с помощью различных экспериментальных методов. Эти методы включают биохимическое выделение белков, клонирование, определение последовательности аминокислот, точечные мутации для изменения аминокислотной последоватэльности в отдельных участках молекулы белка, экспрессию ионных каналов в чужеродных клетках, таких, например, как ооциты лягушек ксенопус (Xenopus) . Кроме того, физическое устройство каналов может быть изучено посредством электронной микроскопии, электронной и рентгеновской дифракции.

Наиболее часто комбинация этих экспериментальных подходов была использована для изучения лиганд-активируемых каналов ацетилхолинового рецептора . Этот рецептор состоит из пяти отдельных субъединиц, собранных кольцом вокруг центра. Две из них - альфа субъединицы - содержат рецепторы для медиатора ацетилхолина . Каждая субъединица имеет четыре трансмембранных домена (обозначаемых как M1, М2, МЗ и М4), соединенных с помощью внутри- и внеклеточных фрагментов белковой молекулы. М2-домены всех пяти субъединиц формируют проницаемую для ионов пору ионного канала. Ацетилхолиновый рецептор является представителем суперсемейства лиганд-активируемых рецепторов, включающего также рецепторы для глицина , рецепторы для гамма-аминомасляной кислоты (ГАМК) и рецепторы для серотонина .

Потенциал-активируемые каналы образуют другое суперсемейство ионных каналов. Установлено, что потенциал-активируемый натриевый канал является единой большой молекулой с четырьмя повторяющимися доменами, расположенными кольцом вокруг центра. Каждый домен содержит шесть трансмембранных сегментов (обозначаемых как S1-S6). В каждом из четырех доменов фрагмент белка между сегментами S5 и S6 обращен к центру и формирует проницаемую для ионов пору.

Потенциал-активируемые кальциевые каналы имеют сходную структуру. Потенциал-активируемые калиевые каналы также подобны по конфигурации натриевым или кальциевым каналам, но с одним важным отличием: они состоят не из одной молекулы, а из 4 отдельных субъединиц.

Аминокислотные последовательности и детальная информация о структуре получены и для других семейств рецепторов и ионных каналов. За редким исключением все они представляют собой совокупность нескольких субъединиц, каждая из которых состоит как минимум из двух трансмембранных доменов и участка, фермирующего водную пору ионного канала.

Для успешного функционирования нервной системы нейроны должны обладать весьма разнообразным репертуаром электрической активности. Например, импульс, генерируемый одним из нейронов, может подавить электрическую активность соседних нервных клеток, активировать ряд отдаленных нейронов, и, наконец, плавно модулировать активность третьей группы нейронов. Все эти варианты поведения зависят, в конечном счете, от активации или деактивации ионных каналов, регулирующих ионные токи через мембраны нервных клеток.

Поэтому столь важно понимать, как функционируют ионные каналы. Это понимание базируется на знании молекулярной структуры белков каналов. Для большого числа ионных каналов определены последовательности аминокислот в белковой молекуле, а также предположительная конфигурация белка в плазматической мембране. В этой главе рассматриваются в деталях два типа ионных каналов. Первая группа - это лиганд-активируемые каналы , представленная никотиновым ацетилхолиновым рецептором . Вторая группа - потенциал-активируемые катионные каналы , которые обеспечивают движение ионов натрия , калия и кальция через клеточную мембрану. Эти два типа каналов служат моделями, на которых базируются постулаты о структуре прочих каналов.

Как же выглядит молекула ионного канала и как она функционирует? В последние годы осуществлен значительный прогресс в понимании структуры ионных каналов. В получении этой информации были использованы два экспериментальных достижения. Во-первых, былк изолированы клоны ДНК, кодирующие структуру ионных каналов, что позволило получить информацию об аминокислотной последовательности этих белков. Техника, используемая при этом, давала также возможность менять основания в молекуле ДНК (сайт-исправленный мутагенез) и заменять таким образом в выбранном участке белка одну аминокислоту другой.

Вторым достижением была разработка техники, посредством которой клоны ДНК были использованы для экспрессии ионных каналов в чужеродных клетках, таких как ооциты Xenopus . Этот прием позволил оценить функциональные свойства клонированных ионных каналов электрофизиологическими методами. Комбинация двух методов позволяла манипулировать специфическими участками молекулы ионного канала, чтобы определить значение этих участков для его функционирования. Применение этих методов позволило выяснить, что в ряде случаев замена даже одной аминокислоты меняет ионную избирательность канала.

Ссылки: